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摘要 

本研究探討敏感度分析之技術是否能讀取神經網路所學得之知識，以及是否能用來評估神經網

路之學習績效。本研究以選擇權定價公式（Black-Scholes formula）之模擬為研究對象。本研究之實驗

結果顯示敏感度分析之技術能讀取神經網路所學得之知識，也能用來評估神經網路之學習績效。 

關鍵詞：敏感度分析、神經網路、選擇權 

Abstract 

This study presents the methodology of sensitivity analysis and explores whether it can be an 

alternative evaluation criterion as well as a tool to “read” artificial neural networks’ knowledge. The 

simulation of the Black-Scholes formula is employed for this object. Since, in the Black-Scholes 

formula, the mapping relationship between the call price and five relevant variables is a 

mathematically close form, it is feasible to verify the validity of the methodology of sensitivity analysis. 

The experiment results are promising; they show that both values of the sensitivity analysis and the 

partial derivative of the Black-Scholes formula are consistent. Furthermore, the sensitivity analysis 

can be an alternative criterion for comparing the effectiveness of ANNs. 
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1. Introduction and Literature Review 
This study adopts artificial neural 

networks (ANN) to simulating the 
Black-Scholes formula to price the call options. 

Similar researches had been done, but they 
focused mainly on the performance comparison 
with some statistic models, and had no further 
analysis of the ANNs. Here we present the 
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methodology of sensitivity analysis, which can 
explore the knowledge embedded in ANNs, to 
see whether the ANNs are actually well trained 
and valid. The object of this study is to 
investigate whether the sensitivity analysis can 
be as an alternative evaluation criterion as well 
as a tool to “read” ANN’s knowledge. This is 
feasible since the ANNs are trained to simulate 
the Black-Scholes formula in which the 
mapping between the call price and five 
relevant variables is a mathematically close 
form. 

There are two ANNs: the multi-layered 
feed-forward (MLP) networks with the Back 
Propagation learning algorithm (BP) 
(Rumelhart et al., 1986) and the RNBP learning 
algorithm (RNBP) (Tsaih, Chen, & Lin, 1998). 
The performance of BP and RNBP are 
measured and compared based on two criteria, 
the learning efficiency and the forecasting 
error. 

When the ANN is used as a modeling tool, 
it is interesting to check if the ANN is well 
trained and if it can display some useful 
information about the task. For the first 
question, we might simply test the ANN with a 
huge amount of data. If the performance of the 
ANN is acceptable within a predetermined 
tolerance, it is comparatively reliable to claim 
that the ANN has been well trained. As for the 
second question, it is necessary to have a 

deeper analysis of the network structure, 
analysis that in fact is rather complicated 
mathematically. For example, it is desirable to 
be capable of specifying the relationships 
between input and output variables. 

The sensitivity analysis, which is similar 
to the factor analysis in statistics, is proposed 
to examine the impact of each input variable. 
When the model had been completely 
understood, the sensitivity analysis can be 
utilized to examine whether the characteristic 
of each (input) variable in the network system 
has been “well trained.” On the other hand, 
when we are not sure about how they interact 
within a system, it is capable of exploring the 
complexity of its sensitive curve, which 
corresponds to the sensitivity of the output 
value to the variation of each (input) variable. 

The experiment results are promising. 
Both values of the sensitivity analysis and the 
partial derivative are consistent. Furthermore, 
in both sensitivity analysis of ANN and partial 
derivative of the formula, the stock price and 
the strike price are the most determinant factors 
to the call price, compared with the other 
variables, the risk-free interest rate, the time to 
expiration, and the volatility. Also, in both 
sensitivity analysis and partial derivative, the 
stock price positively affects the call price and 
the strike price negatively affects the call price. 

In the following, we first review the 
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relevant work. In section 2, we describe our 
experiment design. The performances and 
analyses of the experiments are presented in 
section 3. In section 4, we summarize the 
lessons learned from this study, as well as the 
future work. 

1.1. The Pricing of Option 
Options on stocks were first traded on an 

organized exchange in 1973. Since then there 
has been a dramatic growth on options markets. 
Options are now traded on many exchanges 
throughout the world. Huge volumes of options 
are also traded over the counter by banks and 
other institutions. The underlying assets 
include stocks, stock indices, foreign 
currencies, debt instruments, commodities, and 
future contracts. 

There are two basic types of options: a 
call option gives the holder the right to buy the 
underlying asset by a certain date for a certain 
price; whereas a put option gives the holder the 
right to sell the underlying asset by a certain 
date for a certain price. The price in the contact 
is known as the exercise price or strike price; 
the date is known as the expiration date, 
exercise date, or maturity. American options 
can be exercised at any time up to the 
expiration date. European options can be 
exercised only on the expiration date. 

According to (Black & Scholes, 1973), 
derived based on the no-arbitrage condition and 

other assumptions, the pricing model for the 
European call option can be expressed as 
following: 

� � � 21 dNKedSNC RT�

�� �    (1) 
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where C is the price of a call option, S the 
stock price, K the strike price, R the interest 

rate, T the maturity, � the volatility of stock 
return, and N(x) the cumulative normal 
distribution density function. This formula has 
provided a great contribution to the option 
market for a long time and many advanced 
analyses for this model have been introduced.  

The first order partial derivatives of the 
Black-Scholes formula are well defined; for 
readers who are interested in the detailed 
explanations of them, please refer to (Hull, 
1997). Those partial derivatives will be used a 
benchmark for the validation of the ANN 
through sensitivity analysis. 

1.2. Applications of artificial neural 
networks in pricing of options 

Applications of ANN to pricing the 
options have been explored a lot recently, for 
example, (Hutchinson et al., 1994; Lajbcygier 
et al., 1996, and Hanke, 1997). All of them 
applied BP to simulate the Black-Scholes 
formula. 
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Hutchinson and his colleagues adopted the 
Monte Carlo simulations to produce a two-year 
sample of daily stock prices and create a 
cross-section of options each date according to 
the rules by the Chicago Board Options 
Exchange with prices given by Black-Scholes 
formula. For comparison, they estimated 
models using four popular methods: the least 
square method, the radial basis function neural 
networks, BP, and the projection pursuit. Their 
results showed the performance of BP was not 
significantly better than statistical models. Note 
that, in their study, the values of the strike 
prices (K) and maturity (T) needed to be fixed 
in each Monte Carlo simulation. Lajbcygier 
and his colleagues set up a BP with 4 inputs 
(the ratio of the stock price over the strike price, 
maturity, interest rate, and volatility) and one 
output (the ratio of the call price over the strike 
price). The ranges of the input variables were 
as follows: the values of S/K were in the range 
[0.9, 1.1], the values of T were in the range [0.0, 

0.2], R was the risk free interest rate, and � was 
the volatility of the underlying future. They 
claimed approximately 54% of the real data 
falls within those ranges. They compared BP’s 
results to statistical linear regressions, and 
argued that, in such ranges of the input 
variables, BP’s performance was significantly 
better than those of statistical methods. Hanke 
incorporated GARCH(1,1) model and 

stochastic volatility into BP networks, which 
had 7 input nodes, 50 hidden nodes and 1 
output node. Hanke adopted the GARCH(1,1) 
for additional information regarding the current 
volatility. He merely presented the deviations 
from the target values. 

1.3. BP and RNBP 
(Rumelhart et al., 1986) presented BP; 

since then, BP has been widely used in many 
fields. There are, however, notorious 
predicaments when using BP; for example, the 
unknown of the proper number of hidden nodes, 
the relatively optimal learning result, and the 
sluggish learning process (Tsaih, 1993). Many 
modifications of the original BP has been 
presented (Sarkar, 1995); for example, the 
momentum strategy, the adaptive learning rate 
(Takechi et al., 1995), the self-adaptive back 
propagation (Jacobs, 1988), the controlling 
oscillation of weights, the rescaling of weights, 
the expected source values, the adaptive 
learning rates, the conjugate gradient method 
(Battiti, 1992), and the different error function. 
But none of them provide a generalized 
solution for the undesirable predicaments of BP. 
(Wang, 1995) argued that the unpredictability 
was the biggest problem of BP, and more 
information or prior knowledge of the case can 
provide more meaningful classification 
boundaries for the network structures. 

To address these notorious predicaments 
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of BP, Tsaih has developed Reasoning Neural 
Networks, which is an MLP network with the 
reasoning learning algorithm (RN) (Tsaih, 
1993; Tsaih, 1997; Tsaih, 1998). In summary, 
RN guarantees an optimal solution for 
2-classes categorization learning problems. At 
this point, however, RN is designed to deal 
only with binary output patterns. When 
working with non-binary outputs, real numbers 
can first be converted into binary digits. 
However, this increases the number of output 
nodes and the learning complexity, requiring a 
longer learning time. Thus, Tsaih has further 
developed RNBP (Tsaih, Chen & Lin, 1998), 
which can deal with the non-binary output 
patterns.  As stated in (Tsaih, Chen & Lin, 
1998), RNBP significantly outperforms BP in 
the effectiveness regarding the testing data set, 
while both of them perform similarly in the 
effectiveness regarding the training data set.  
Therefore, we also adopt RNBP in our 
research. 

A brief summary about RNBP is 
presented in the following two paragraphs.1 

The main idea of RNBP is to utilize the 
following credits of the learning algorithm of 
RN: the ability of autonomously recruiting as 
well as pruning hidden nodes during the 

learning process, and the guaranteeing of 
obtaining the desired solution for the 2-classes 
categorization learning problem. With those 
credits as well as the fact that both RN and BP 
can be applied to the MLP network, RN may 
acquire some useful information for BP, for 
example, a proper amount of used hidden 
nodes and the well-assigned (initial) weights. 

                                                 
1 For the details of the RNBP, the readers can be 
referred to [Tsaih, Chen & Lin, 1998]. 

With respect to the application problems 
of the output values being real values, we 
firstly classify the training data into two 
categories via a rule of thumb. For example, 

�
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�
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�
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c
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dif
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d    (2) 

where dc is the cth (real) desired output value, 

� is the mean value (or the median) of dcs, and 

cd  is the corresponding desired output value 

for RN’s learning algorithm. In other words, 
each output value will be replaced by the 
associated binary digit. Such data are used as 
the training patterns for RN’s learning 
algorithm. Then we adopt the network obtained 
from RN’s learning, and uses BP to learn the 
original training data. 

1.4. the sensitivity analysis  
(Yoon et al., 1994) argued that, after 

building the ANN, reading or understanding 
the knowledge in ANN was difficult because 
the knowledge was distributed over the entire 
network. However, the sensitivity analysis of 
the ANN is necessary not only for a better 
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understanding of the mapping between input 
and output variables in the applying domains, 

but also for the further research of the ANN 
itself.  

Table 1  List of papers relevant to the sensitivity analysis 

reference formula 

Yoon, Guimaraes, & 
Swale (1994) � �� �

�
�

liij

liij
lj rwABS

rw
RS  

Naimimohasses, Barnett, 
Green, & Smith (1995) � � � � � �� ��

�

��

p

1i
icicijlicjl ,h1,hwrS XBXBB  & 

� �� ���
c

cjlSABS
n
1S B  

Steiger & Sharda (1996) � �
� �� �

�
�

lj

lj
lj gABS

gABS
RS  

Chiou, Liu, & Tsaih 
(1996) � �� ���

�

��

p

1i c
ijic

2
lilj w,h1rS XB  

From the literature review, there were 
some related studies. Table 1 shows some 
relevant literature review; the explanations of 
symbols please refer to Table 2 and the 
following paragraphs. Without presenting the 
derivation of the methodology, (Yoon et al., 
1994) proposed a way of profiling the impact 
of each input variable. For a network with one 
hidden layer, it involved computing a test 
statistic of the form: 

� �� �

�
�

liij

liij
lj rwABS

rw
RS    (3) 

RSlj was the relative strength between the 
jth input and the lth output variable, and ABS 

meant the absolute value. This statistic 
measured the strength of the relationship of the 
jth input and the lth output variable to the total 
strength of all of the input and output variables. 
It was similar to the multivariate analysis. 

(Naimimohasses et al., 1995) defined a 
sensitivity matrix for inputs and outputs vector 
arrays over the training patterns c: 

� � � � � �� ��
�

��

p

1i
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(4) 

� ����
c

cjlSABS
n
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That is, the total sensitivity S was derived by 
calculating the statistical significance of the 
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contribution due to each individual input, 
Sjl(Bc), over all training patterns. 
Naimimohasses et al. were interested in 

plotting the sensitivity function of training 
epochs, which could give trends of relative 
input sensitivity. 

Table 2  List of Symbols 
m, p, and q : the amounts of input, hidden, and output nodes, respectively. 
Bc : the cth given stimulus input pattern, c=1, 2 , …, k. 
bcj : the input value received by the jth input node when Bc is presented to the network.  
wij : the weight of connection between the jth input and the ith hidden node. 
wi : the vector of weights of the connections between all input nodes and ith hidden node; wi

≡(wi1, wi2, … wim). 

i�  : the negative of the threshold value of the ith hidden node. 
Xi

t≡(� , wi i
t) and Xt≡(X1

t, X2
t, …, Xp

t). 
h(Bc, Xi) : the activation value of the ith hidden node given the stimulus Bc, and 

h(Bc, Xi)�  	



�
�



�
��

�

m

j
cjiji

1
bwθtanh

h(Bc, X) : the activation value vector of all hidden nodes given the stimulus Bc, and 
h(Bc, X)≡(h(Bc, X1), h(Bc, X2), …, h(Bc, Xp))t 

rli : the weight of the connections between ith hidden nodes and lth output node. 
rl : the vector of weights of the connections between all hidden nodes and lth output node; rl≡
(rl1, rl2, …, rlp). 
sl : the negative of the threshold value of the lth output node. 
Yl

t≡(sl, rl
t), Yt≡(Y1

t, Y1
t, …, Yq

t), and Zt≡(Yt, Xt). 
net(Bc, Yl, X) : the net input value of the lth output node given the stimulus Bc, and 

net(Bc, Yl, X)  � ���
�

�
��
�

�
�� �

�

p

1i
iclil X,Bhrstanh

O(Bc, Yl, X) : the activation value of the lth output node given the stimulus Bc, and 
O(Bc, Yl, X) ≡tanh(net(Bc, Yl, X)) 

dcl : the desired output value of the lth output node when Bc is presented to the network. 
(Jarvis & Stuart, 1996) adopted the 

sensitivity analysis to explore the effects of 
altering networks parameters on the training 
times and the classification accuracy. (Steiger 
& Sharda, 1996) calculated the relative 
sensitivity of inputs to the network by 
“wiggling” each input value. The effect of each 

wiggle on every training pattern was 
determined, and the overall average absolute 
difference between the modified outputs and 
original outputs was calculated. The input 
sensitivity was the relative ratio of the overall 
average absolute difference over all input 
variables. It seems their mathematical model 
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was as following: 

� �
� �� �

�
�

lj

lj
lj gABS

gABS
RS  (6) 

where RSlj is the relative sensitivity between 

the jth input and the lth output variable, ljg�  

is the average value of the effect by wiggling 
the value of each input. 

In (Chiou et al., 1996), the sensitivity 
factor of each input variable was defined as the 
sum of partial derivatives of all training 
patterns as: 

� �� ���
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p
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ijic

2
lilj w,h1rS XB  (7) 

Slj was the sensitivity factor between the jth 
input and the lth output variable. 

Some sensitivity analyses described in 
Table 1 provided a gross indicator of key factor 
via measuring the effect of altering an input 
variable on the output value by integrating over 
all input patterns. However, they ignored the 
potential interaction between two or more input 
patterns. To summate them probably 
neutralizes their interactions. 

Here we modify the sensitivity factor 
derived in (Chiou et al., 1996). The modified 
sensitivity factor does not summate over all 
training patterns, and is defined as following: 
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where netl corresponds to the net input variable 
of the lth output node, hi corresponds to the 
activation variable of the ith hidden node, and 
neti corresponds to the net input variable of the 
ith hidden node. The relative sensitivity factor 
is defined as follows: 
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It is feasible to plot together the Rlj(Bc) 
values and the partial derivatives of a close 
form equation of all training patterns, and make 
the comparison. For example, suppose an 
equation is defined as: 

� � 432 104
3
1,,, zyxwzyxwf ����   (11) 

where w, x, y and z are independent variables. We 

use the RNBP network with four input nodes and 

one output node, and there are totally 400 training 

patterns, which are generated randomly with the 

value of each variable being ranged from -0.5 to 0.5. 
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The mean values of w, x, y and z over those 400 

training patterns are 0.034222, 0.005553, -0.00547, 

and -0.02562, respectively. After finishing the 

learning, the Rlj(Bc) values of all training patterns 

can be calculated from the methodology described 

above, and then compared to the partial derivative 

values of f(w, x, y, z). Let’s take the y as the 

illustration. Figure 1 shows the values of y, the 

corresponding values of 
y
f
�

�
, and the 

corresponding Rlj(Bc) values derived from RNBP. It 

seems that RNBP’s generalizing ability is not good 

when the value of y is less than -0.4 or greater than 

0.4.  
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Figure 1  The curves of partial derivate and sensitivity of equation (11) concerning with y 
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        (12) 
Take the above case of f(w, x, y, z) as the 

illustration, the Rlj of w, x, y, z are 0.424315 
-0.106258, 0.411498, and -0.057929, 
respectively; and the mean values of the Rlj(Bc) 
are 0.213891, 0.002035, 0.351272, and 
0.049241, respectively. Compared with the 
mean values of partial derivatives of f 
concerning w, x, y, and z, which are 0.33333, 
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0.011106, 0.596596, and 0.047527, the relative 
magnitudes of Rlj or Rlj(Bc) are similar to the 
mean values of partial derivatives of f, though 
the numbers are not the same. 

A larger Rlj(Bc) indicates that, given a 
particular input pattern Bc, the lth output is 
more sensitive to the deviation of the jth input, 
while a larger Rlj indicates that, in general, the 
deviation of the jth input has a larger impact to 
the lth output. Thus, Rlj(Bc) and Rlj are the 
relative impacts of the jth input to the lth 
output concerning some input pattern Bc and a 
general input pattern, respectively. 

With the definition of the relative impact, 
Rlj(Bc) and Rlj, it is capable of calculating the 
relative average sensitivity of the output to 
each input despite the (input) variables’ 
interdependency. If the simulation model is 
unknown, the relative impact can be used to 
explore the characteristic of each input. In 
addition, the relative impact can be a tool for 

factors filtering. If the input variables of an 
ANN are imperfectly selected or have 
incomplete information, the relative impact is 
helpful for finding a less relevant factor whose 
relative impact is zero or tiny. 

2. Experiment Designs and Methodology 
The input data (S, K, R, T, �) are 

generated randomly in the range defined in 
Table 3, and the desired output is the call prices 
derived based on the Black-Scholes formula. 
The patterns are separated into two categories: 
the in-the-money options and the 
out-of-the-money options. It is called the 
in-the-money option if the stock price is greater 
than its strike price; and the out-of-the money 
option if the stock price less than its strike 
price. In order to study whether the ANN 
behaves differently upon those two categories 
of options, there are two experiments: one for 
the in-the-money options and one for the 
out-of-the-money options. 

Table 3  Ranges of input variables of training networks 
Variable In-the-money Out-of-the-money Distribution 

S 20 - 60 40 - 60 Uniform 
K 1.0 < S/K < 1.3 0.7 < S/K < 1.0 Uniform 
R 0.04 - 0.09 0.04 - 0.09 Uniform 
T 0.01 - 1.0 0.2 - 1.0 Uniform 
� 0.2 - 0.6 0.3 - 0.7 Uniform 

Thus, there are five input nodes, each of 
which corresponds to each input variable, 
respectively, and one output node, which 
corresponds to the call prices. There exist 400 

training patterns and 1000 testing patterns for 
both BP and RNBP. The networks are trained 
with a random sequence of patterns; Figures 2 
and 3 display the sorted and unsorted desired 
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values of call prices of the 400 training 
concerning the in-the-money options and the 
out-of-the-money options, respectively. The 

average call prices of the in-the-money and the 
out-of-the-money options are 7.96 and 6.17, 
respectively. 
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Figure 2  The desired call prices concerning the in-the-money options 
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Figure 3  The desired call prices concerning the out-of-the-money options 
RNBP is applied repeatedly to the same 

data set with different learning parameters and 
input sequence of the training patterns. As 
RNBP repeats, different amounts of recruited 

hidden nodes are obtained. Thus RNBP are 
applied several times till the variance of the 
amounts of recruited hidden nodes is 
acceptable. From the experimental results, 
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twenty repeated simulations of RNBP has a 
reasonable volatility of the amounts of 
recruited hidden nodes. Therefore, for both 
experiments upon the in-the-money options 
and the out-of-money options, 20 repeated 
simulations of RNBP and BP have been 
performed. 

There are two BPs, which have 4 and 12 
hidden nodes, respectively, and are denoted 
BP(1) and BP(2), respectively. The initial 
weights and threshold value are given 
randomly from -1.0 to 1.0. The reason for we 
run BP(2) is that the average amounts of 
hidden nodes recruited over 20 RNBPs are near 
12. It is desirable to make a fair comparison 
between BP and RNBP based on a similar 
network structure. 

The evaluation criteria for the system 
performance include the efficiency and the 
effectiveness. The purpose of exploring the 
efficiency is to study which one has a faster 
learning process, and the exploring the 
effectiveness is to study which one has a better 
generalization ability. 

For displaying the efficiency, the 
information of the average amount of learning 
iterations spent in each case is used. One of the 
stopping criteria of the learning is the tolerable 
error level, which is set as 0.01; however, the 
upper bound of learning iterations is 10000. 
That is, if the value of the total error can not 

converge below the tolerable error level within 
10000, the learning stops. As for measuring the 
effectiveness, the mean relative error is used. 
The mean relative error is defined as: 

� �

n

a
c l

cllccl�� � XYB ,,Od
  (13) 

where acl is the actual option prices, the 
subscript c denotes the cth testing data, and n is 
the amount of testing data. 

3. Performance and Analysis 
3.1. Simulation performance of BP and 
RNBP 

Table 4 displays the summary results of 
simulations. The averages and standard 
deviations of NRNBP concerning the 
in-the-money options are very similar to those 
concerning the out-of-the-money options. Table 
4 also displays following facts: 
(1) In each experiment, the average and the 
standard deviation of TBP(1) and ABP(1) are quite 
similar to those of TBP(2) and ABP(2). 
(2) From the experimental results of TBP(1), 
TBP(2) and TRNBP, it seems that, in terms of the 
learning efficiency, it is more difficult for both 
ANNs to learn the out-of-the-money options 
than the in-the-money options. Furthermore, 
Both BP and RNBP perform better in the 
in-the-money options than in the 
out-of-the-money options. 
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Table 4  Simulation results of BP and RNBP. T denotes the amount of the learning iterations 
taken in the BP part, A denotes the mean relative error, and N is the amount of recruited hidden 
nodes. 

The in-the-money options 

 TBP(1) ABP(1) TBP(2) ABP(2) TRNBP ARNBP NRNBP 

Average 6222 8.24% 6596 8.29% 3684.10 8.85% 12.35 
Standard 
deviation 150.67 0.02% 284.57 0.019% 3929.73 0.80% 5.45 

Average CPU 
time (seconds) 120.7 280.33 156.57 

The out-of-the-money options 

 TBP(1) ABP(1) TBP(2) ABP(2) TRNBP ARNBP NRNBP 

Average 10000 18.32% 10000 18.31% 5704.3 12.27% 12.1 
Standard 
deviation 0 0.04% 0 0.01% 3342.06 4.06% 5.45 

Average CPU 
time (seconds) 193.98  425 242.42 

 
The in-the-money options 

 (TBP(1), ABP(1)) (TBP(2), ABP(2)) (TRNBP, ARNBP) (TRNBP, NRNBP) (ARNBP,NRNBP)
correlation coefficient 0.7937 0.8823 0.5247 -0.0554 -0.1043 

The out-of-the-money options 
 (TBP(1), ABP(1)) (TBP(2), ABP(2)) (TRNBP, ARNBP) (TRNBP, NRNBP) (ARNBP,NRNBP)

correlation coefficient 0 0 0.5504 -0.0803 0.1324 

(3) Regarding the mean relative errors, 
RNBP outperforms both BP(1) and BP(2) 
(p-values are 1.12E-06 and 1.15E-06, 
respectively, by T-test) in the out-of-the-money 
options, although both BP(1) and BP(2) 
perform a little better than RNBP (p-values are 
0.0108 and 0.0268, respectively, by T-test) in 
the in-the-money options. 
(4) The standard deviation of ARNBP is 
evidently greater than that of ABP(1) and ABP(2) 
(p-values are nearly 0.0, by F-test) in both 

in-the-money and out-of-the-money options. 
(5) The mean of TRNBP is significantly less, 
but the CPU time taken by RNBP is larger than 
the one taken by BP(1). This is because RNBP 
adopts much more hidden nodes (12.35 and 
12.1 in average, respectively) than BP(1). More 
hidden nodes cause more time complexity.   
(6) ARNBP increases as TRNBP increases. This 
is reasonable since some simulations do not 
reach the tolerant error level within 10000 
times. If they do not learn successfully, their 
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forecasting errors should be larger. 
(7) NRNBP is less relevant to either ARNBP or 
TRNBP in both in-the-money and out-of-the- 

money experiments. 

3.2. the sensitivity analysis 

Table 5  The results of sensitivity analysis 
  S K R T � 

B-S 
mean (standard deviation) of the 
partial derivative values over all 

training patterns 

0.4549 
(0.0311)

-0.3915 
(0.0546)

0.0803 
(0.0339)

0.0283 
(0.0278) 

0.0393 
(0.0372)

BP(1) 
mean (standard deviation) of the 
Rlj(Bc) values over all training 

patterns 

0.4595 
(1.05E-05)

-0.3917 
(1.56E-05)

0.0755 
(1.16E-05)

0.0297 
(1.30E-05) 

0.0436 
(9.23E-06)

 Rlj 0.4595 -0.3917 0.0756 0.0297 0.0436 
mean (standard deviation) of the 
Rlj(Bc) values over all training 

patterns 

0.4516 
(1.81E-05)

-0.3868 
(3.10E-05)

0.0946 
(1.62E-05)

0.0292 
(2.45E-05) 

0.0423 
(1.60E-05)BP(2) 

Rlj 0.4518 -0.3816 0.0908 0.0293 0.0426 

RNBP 
mean (standard deviation) of the 
Rlj(Bc) values over all training 

patterns 

0.4521 
(0.1186)

-0.3752 
(0.1321)

0.0029 
(0.1075)

0.0347 
(0.0564) 

0.0523 
(0.0425)

In
-th

e-
m

on
ey

 

 Rlj 0.4427 -0.3961 0.0469 0.0725 0.0418 

B-S 
mean (standard deviation) of the 
partial derivative values over all 

training patterns 

0.4289 
(0.1368)

-0.2792 
(0.0982)

0.1196 
(0.0646)

0.0882 
(0.0346) 

0.1685 
(0.0559)

BP(1) 
mean (standard deviation) of the 
Rlj(Bc) values over all training 

patterns 

0.4201 
(0.0029)

-0.2690 
(0.0018)

0.0531 
(0.0065)

0.0886 
(0.0006) 

0.1692 
(0.0012)

 Rlj 0.4201 -0.2689 0.0532 0.0886 0.1692 
mean (standard deviation) of the 
Rlj(Bc) values over all training 

patterns 

0.4145 
(3.08E-05)

-0.2654 
(6.22E-05)

0.0657 
(2.64E-05)

0.0874 
(3.75E-05) 

0.1670 
(3.14E-05)BP(2) 

 
Rlj 0.4145 -0.2653 0.0657 0.0874 0.1671 

RNBP 
mean (standard deviation) of the 
Rlj(Bc) values over all training 

patterns 

0.4266 
(0.0546)

-0.2862 
(0.0466)

0.0299 
(0.0603)

0.0961 
(0.0211) 

0.1886 
(0.0371)

O
ut

-o
f-

th
e-

m
on

ey
 

 Rlj 0.4123 -0.2719 0.0735 0.0531 0.1535 
 

Table 5 displays the results of the 
sensitivity analysis. The results in both ANN 
and partial derivative values are consistent. It 
shows that, in both ANN and partial derivative 
values, S and K are the most determinant 

factors to the call price, compared with the 

other variables, R, T and �. Furthermore, in 
both ANN and partial derivative values, S 
positively affects the call price and K 
negatively affects the call price. Thus, the 
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results of the sensitivity analysis indicate that 
both ANNs have learned the characteristics of 
those five input variables. 

However, it seems that RNBP has learned 
the characteristics of those five input variables 
more successfully than BP. Table 5 also 
displays that the standard deviations of Rlj(B) 
in BP are much smaller, compared with those 
in RNBP. Such phenomenon can be 
demonstrated more clearly with Figure 4. It 
seems that, with BP, the standard deviation of 
the sensitivity of every input pattern is almost 
the same. This may be due to the saturation 

phenomenon happened in BP. BP adopts the 
tanh function as its activation function. Thus, 
if most weights between the hidden nodes and 
the output node are large, then, for any (input) 
patterns, the magnitude of the net input to the 
output node is liable to be too large such that 
its output value will saturate (near to 1.0 
or –1.0). This is denoted as the saturation 
phenomenon. RNBP evidently does not have 
the saturation phenomenon. Furthermore, the 
distribution of its sensitivity values is more 
reasonable, comparing to BP. 
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Figure 4  The sensitivity curves 
Figures 5 and 6 display the frequency 

distributions of the desired call prices and the 
forecast results of BP and RNBP regarding 
those 400 training patterns. Those figures agree 
with the previous conclusion that BP performs 
better than RNBP in the in-the-money options, 
while worse in the out-of-the-money options. 

The most interesting observation of Figure 

5 is that, there is no occurrence of forecasting 
value on the range of call price either less than 
2.0 or greater than 17. Likewise, in Figure 6, 
no occurrence of forecasting value on the range 
of call price greater than 13.8. It seems that 
both ANNs are not well trained since their 
generalization ability are defective in some 
range of call prices. 
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Figure 5  The frequency distribution in the in-the-money experiment 
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Figure 6  The frequency distribution in the out-of-the-money experiment 

4. Summary and Future Work 
The following lessons have been learned 

from this study: 
(1)  Table 5 displays the fact that the standard 
deviations of Rlj(B) in BP are much smaller, 
compared with those in RNBP. This may be 
due to the saturation phenomenon happened in 

BP. On the other hand, RNBP evidently does 
not have the saturation phenomenon. 
Furthermore, the distribution of RNBP’s 
sensitivity values is more reasonable, 
comparing to BP. 
(2)  The results of the sensitivity analysis of 
RNBP in this study are consistent with our 
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prior expectations. The sensitivity analysis can 
indicate the key factors which contribute the 
most impacts to the outputs. 
 In summary, the sensitivity analysis can 
be an alternative criterion for comparing the 
effectiveness of ANNs. Moreover, the 
sensitivity analysis can discover the knowledge 
embedded in ANN. Thus it is an efficient tool 
for information filtering and mining in an 
unknown environment. 
 Although we have obtained some robust 
results, the following topics need to be further 
studied in the future: 
(1)  The sensitivity analysis can discover the 
knowledge embedded in ANN. This is useful 
for artificial intelligent agent in applications, 
especially in this overmuch information society. 
One future work is to explore further the ability 
of the sensitivity analysis in reading the 
knowledge embedded in ANN via applying it 
to a real practical problem. 
(2)  We have observed that there is no 
occurrence of forecasting value on the range of 
call price either less than 2.0 or greater than 17 
in Figure 5; similarly in Figure 6, there is no 
occurrence of forecasting value on the range of 
call price greater than 13.8. It seems that both 
ANNs are not well trained since its 
generalization ability is defect in those ranges 
of call prices. One future work is to explore the 
reason behind this defect. 
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