Compositional Transformation of Message Sequence Charts into High—level Petri Boxes 75

Compositional Transformation of M essage
Sequence Chartsinto High—level Petri Boxes
(Extended Abstract)

Daniel Gurovi€ und W. Fengler
{gurovicl|fengler} @theoinf.tu-ilmenau.de
Department of Computer Science and Automation University of Ilmenau, Germany

Abstract

The concern of this paper consists in utilizing the theoretical findings on the field of formal
compositional semantics, in particular those of high level Petri nets, for the specification of
communicating embeded systems. Transformation of these approaches, and their evaluation in
practice occurs with the aid of one of the formal rotation of the UML namely the Message Sequence
Charts, particularly the M SC’96. Communication requirements of embedded systems are graphically
specified and then transformed into an executable class of high level Petri nets.

Keywords: Petri nets, compositional semantics, specification, MSC

1. Introduction

Message Sequence Charts (MSCs) have established themselves as a standard description
notation for the specification of comminicating embedded applications as known for example
from the telecomminication area,. Their propagation found even entry into the UML which is
becoming more and more popular in the indus-try. Z.120 [IT96] served here as a pattern for so—
called Sequence Charts defined within the UML. The first effort to standardize the semantics of
MSCs by means of a process algebra was undertaken in annex B of Z.120. As for all description
notations it also applies to MSCs that a formally defined semantics is necessary in order to make
conclusions about the system properties or to put it on the same formal basis as another system
design notation like SDL in [FG98], gaining so the possibility to check them against each other,
that is to verify whether the designed system meets its specification.

For two reasons we decided for so— called M—nets as our semantic domain. M— nets firstly
have an algebraic structure and thus allows a compositional transformation. Secondly there is a
possibility of a tool based analysis within the PEPTool [Gra97] and the export into another Petri
net format.

We proceed as follows: In section 2 we repeat the most important facts about M— nets from
[BFF'95]. Afterwards, in section 3 we describe the transformation process of MSCs into that
high— level Petri nets. We begin with the High— Level Message Sequence Charts and go ahead

76

with the Basic Message Sequence Charts then. The transformation is based on the textuell syntax
description in IT96] and is, due to a better readability, described in the same way as in annex B of
Z.120 standard.

2. M—Nets

In this section we describe the syntactical and semantical domain of our transformation of
MSC:s into Petri nets. We use a special class of Petri nets so—called

e {siot) O e (1 2)
c Tid_x

efl 2} & {dot) afl 2}

E c 3 . id_X ©

: Odlid_% e 4§ i
_A=2 i
(e.X} - d_ 1d_x /ny

X
<>x(dn()x(1 2 Ox(‘! 2) Q w{dot) X {1 2} me 2)x(dm}xﬁ 2 qu 2}

PXgd_X e) {X(id_X.ep.{ ("X, Xl (}

id X=2 i _X=2

it
eX) T d_X
Y

Figure 1 : From the left : N{||N,, (N;||N,) sy X and (N;]|N;) sy X rs X

M —nets — a version of high—level Petri—-Boxes [BDH92]. They were developed with the
goal to give a fully compositional semantics for concurrent program—ming languages and system
notations. More precise definitions are to be found in [BDH92, BFF 95, DK95]. First, we give,
soma auxiliary definitions and repeat the basic definitions concerning the M—nets.

Let Q be a set, A multi —set over Q is a function u : Q — Njy. The set of all finite multi—sets
over Q is described as M{Q). Further we assume the existence of sets Val, Var, A and B of
values, variables, action symbols and tie-symbols, respectively. Action symbols have arbitrary
many parameters ar(A) € Ny. There is a bijective function defined over A called conjugation ™ : A
- A satisfying VA € A: A#Z AAA=Aandar(A) = ar(A). A construct A(iy,...,lua)) is an
action term if A is an action symbol and Vj:1< j<ar(A):i; eVal uVar. The set of all

action terms is described as AX. A construct b (@) is a link symbol if be B and
aeVal uVar .

Definition 2.1 An M—net is a triple (S,T,7) , such, that S, T is the set of places and transtions
respectively and z is a function called inscription with domain PUT U (PxT) U (T x P)such
that:

Compositional Transformation of Message Sequence Charts into High—level Petri Boxes 77

Vs € S, w(s) ds a pair A(s).7(s) with Ns) € {e,i,x} and 7(s) C Val the

place type.

Vie T o{t) = AE)~y(t) with N(t) = «(t).5(t) called the label of t. such that

aft) € My(AXy) finite multi-set of action terms and 5(t) € M(By) is

the link symbol; ~v(t) is the guard of 1.

Vs t) € (S.1), t(s.t)) € My(ValuVar): analogously applies to (t,s) €

(1.5).

A marking of an M—net (S,T,z), M : S — M/ (Val), assigns to each place s a multi—set of

values from 7(S). The transition firing rule corresponds to the one of colored Petri nets, i.e.

transition t is enabled in M if there is an enabling bindingo for variables in the inscription of t
such that there are enough tokens of the appropriate type to satisfy the required token amount and
the guard y(t)[o] is true. The effect of occurrence of t consists in removing tokens from the

input places and adding tokens to its output places according to 7((S,t)) and #((t,S)) respectively.

M-nets represent a combination of colored and labeled high—level nets. The net elements i.e.
places, transitions and arcs axe labeled in addition to types, terms and transition guards with
auxiliary information which determines the status of each place (entry, exit or internal) and
assigns to each transition a communication resp. refindment interface. These additional
inscriptions A(S) and A(t) were introduced in order to define some compositional operators over

M-nets [BFF+95]. These are either operators which determine the control flow or the
communication with the environment. To the former set belongs the sequential, parallel,
alternative and iteractive composition (, ||, [] resp. [¥*]). The later group contains operations for
synchronous and asynchronous communication, sy bzw. tie. The latter one was introduced first in
[KP99].

As already mentioned above, transitions are labeled with multi—sets of actions. They
represent the capability to a synchronous communication With the environ ment.

78

C)w 2) eqy
T i

i a

y

1A D)) {prial) e U b (b (1)) {Aa.b3
LS - ___J i « [
r l :
a

T O1b @)
it
@R

N x{1 2 N tie b <2

P —

{dot)

Figure 2: From the left: N and N tie b

Its mechanism is illustrated by means of the figure 1. Nets N; and N, each contains one
transition with X(., .) resp. i.e. both transitions can synchronine, in respect of X. The result is in
the middle of the figure. Transition svnchronizaticarr gives rise to a new transition labeled with

al+a2—-{X(,.), Y(,)}, i.e. a sum of the both multi-sets minus the synchronization pair.

Afterwards, the resulting net is restricted with respect to the action X by the rs—operator
(restriction). This restriction consists in deleting all transitions labeled with X from the
net.

For the explanation of the tie—operator we use a figure 2 from [KP99]. In the left hand part
of this figure the tie-operator takes an M-net N and a link symbol b and produces an M-
net tie b in the right hand part which is like N but has an additional internal place s, of the
same type as b, and additional arcs to and from S, These arcs connect §, to every transition t
with b" resp. b” in such a way that (t, §) and (s, ,1) arise. The inscription of the new arcs
corresponds to the argument of the link symbol b. In other words, the tie-operator realizes
a kind of intermediate storage for information which occurs somewhere in the net.

Another important operator which we will make use of is a transition refinement
N[X <« N]. It is allowed only for hierarchical transitions, i.e. transitions labeled with a variable.

Beyond this, input and output places surrounding the transition to be refined, "t Ut", must be of
the same type. A precise definition of the refinement operator for high—level Petri-nets is in
[DK95].

3. Transfor mation of M SCsinto M—nets

In this section we describe our approach for transformation of MSCs into M—nets. For the
illustration of our approach we use some small examples of an HMSC Ex, MSC Driving and MSC
Ref in figure 3, 8 resp. 10.

The semantic function S translates every MSC into an M—net. In the style of [IT96] the

Compositional Transformation of Message Sequence Charts into High—level Petri Boxes 79

general appearance of Sis

N
5<X>

le] - L{<X>) — M-net
with <X> a non-terminal from the grammar of MSC’96 [IT96] and i the actual argument
representing (part of) an MSC. For example, let @, a, € L (<msc ref expr>) i.e. two sequences
of the language derived from the non—terminal symbol <msc ref expr> then a; and a, alt a, are
valid argument, the latter one representing a sequence constructed from a; , the terminal symbol
alt and a,.

We start with the HMSCs and proceed then in a top—down manner with the BMSCs,
instances, events and coregions until the references and inlines. Further, we assume that a

maximum number max_i of possibly concurrent instances' of one and the same BMSC is given,
max_i € N and that places without any type inscription carry implictly as their type theset{dot}.

{dat}
a

f {dot}

MSC Ex

B2 | (84 s0q B5) par ooy 5(B6 seq By |

{ddot)

Figure 3: Ein HMSC Ex-Scenario und das zugeh” origes M—Netz

3.1 MSC-Document

1 . . .
Not to confuse with process instances a BMSC consist of.

80

In dealing with MSCs one MSC—document is a combination of High—level Message
Sequence Charts (HMSCs) and Basic Message Sequence Charts (BMSCs). The HMSCs
determine the control flow within the scenario and represent a means of abstraction. Therefore
the meaning of an MSC—document results froth the parallel composition of all referenced BMSCs
and the M—net of the actual HMSC. All BMSCs are translated only once. Different references of
one and the sane BMSC are translated as a sequence of a reference call and termination similar to
a procedure call in an imperative programming language [FG97]. Thereby it is possible to keep
the M—net size small.

Definition 3.1 Let m € L(<msc doc>), 1 € L(<bmsc>) and j € L(<hmsc>)

such that

S«—:m.s'(,: docs [m] =

[sync: (Hv;eAHB'r/’J,sn(m) S< [)’rl’l,,‘;'(??.»ﬂ]'ﬂ) S

| < <hmsc>

[BrtrHmse(5)])]

where sync ={M_,M, |c,r € AllRefName(m)} is the set of all MSC referrcnce Calls and

terminations of all referenced BMSCs in m referenzierten BMSCs and where anal ogous AllBmsc()
isthe set of all BMSC and ExtrHmsc() the set of all HMSC definitions.

Expression [a : E] is a shortened spelling for (E sy a rs a).

3.2 High-level MSC

High-level MSCs describe how a set of BMSCs is combined within a single dia—gram and
therefore they describe the control flow between several BMSCs. An HMSC is a directed graph
G= (N, V) whose nodes are either a start symbol, an end symbol, an MSC reference, a connector,
a condition or a parallel frame,

Le. N = NgUNp with Ng = j\/.‘;f,(l,‘l‘/.S‘jl/’l'r'),l)()[U ‘/\/(37'L(lh‘:l/77'l,()()[U]\/r:o'rm,('(:lor U f\/(tm),(lil,iml, and

N] - "\i]'t'j‘t"l‘("ll,»(t(" U iw‘/*m,mvv

Definition 3.2 Let R, € L(<node>) then the semantics of an HMSCs H is

defined as a refinement S_ hnse L = N[X, <8 R Ya € Np| where

<node:

N = (S,T, 1) with,

Compositional Transformation of Message Sequence Charts into High—level Petri Boxes 81

S= Ng x {xfU{(z,y)|e,ye NpA(r,y)e V}
T = Npx {=}U{{x,y)lr,y € Ng A (r,y) € V}

W, =), (y, %)) = Vi, y),if(x,y) € Ng x Np U Np x Ny

Figure 40 S_p pee Ex]= .0 S_oqeal - par .o]

W{le,x), (0, y)) = Ve, y),if(z,y) € Ng x Ng U Np X Np
W y), (yyx)) = Ve, y),if(r,y) € Ng x Ng U Np x Ny

{(f}.{(l()i;h // ac A’sl,a/r'L.s*;l/'m,bo[ANb = x
{‘/1’.}'{(10/;}7 // a € A"\Tlf]nxls;z/mbol Nb = x
1((a, b)) = OAdott, wenn a € Ns\Nytartsympor U Nondsympor 0

a#x#£bA(a,b) € Ng x Ng U Np x Ny

{XE0.0, wenn ae NpAX, € Var

82

loop<2,5> (BB seq B7)

where S_ . is the semantic function for the translation of an HMSC node.

This means that a start, an end, a connector, a condition symbol and edges between any two
symbols from Nt become places. All MSC reference, a parallel frame and any two edges between

symbols from Ns become transitions. The resulting M—net is then refined with the meaning of the
MSC references.

Compositional Transformation of Message Sequence Charts into High—level Petri Boxes 83

c
/Q {doty
3 — ¢ \
{86 seq B7){} tt J

B0 x>=28 xax

D e e I x)
Figure 51 5_y e [Ex]= .. S_oqe-lloop

An example of all HMSC and corresponding M—net are depicted ill figure 3. It describes the
order of individual BMSCs, namely at first an MSC reference B1 occurs and then a connector
node comes where the flow branches out either to the reference B2 or to another reference
consisting of a complex expression.

(B4 seq B5) par (loop B6 seq B7)))

Definition 3.3 Let name € L(<msc name>), par € L{<par expr list>), exp

84

/)e(dot
'l J B

T?‘

¥ 110 max)
- e

/

e {dot)

“hc(id)
e bk = x0T 4w o = oot
j\ o max_i} g T a
- . id
oA/ ™ 7 N $
_/ {dot) { R A N R] eias ¢
.)) 1 max_i) { | (Metaa
0} c it
l I(am)

81
{dot} X {3 max_ij
tt
G0 =0 & wmx e
{11}, (max_imax_i)
1 {doty A max iy { iMetiid))
i
id 3

\\

{1 max_} X {1 max_iy

cp,iid)

{"Mriid}) {3

) % {dat}
op = op 1
/

o
* {dot)

Figure 6: from the left: N 0™ , Nviscoed and hres

€ AL(<msc ref expr> and H be an HMSC, then Sc e iS defined as

e J— g o
<1 ()(f()\ pai H - Hfﬁ,.*'”l]"(L‘I'l]‘n!,s’(i([)thl‘) S <node> H/H

I
node=1emp] = S ref expr- 162

Nyep, if name s an BMSC

y

SonodesIname] =

S_hmses H], if name is an HMSC H

where AllParHmsc(par) is the set of all HMSCs within a parallel frame par.

This definition says that a parallele frame is translated by means of the parallel operator ||. A
reference expression combines a number of MSCs to one and is consequently translated
according to the following definition (see figures 4 and 5). Finally, an BMSC-reference is
translated as a procedure call. The net N, is in figure 6.

Definition 3.4 Lel ay,ay,exp € L(<msc ref expr>), py,pe € L(<msc ref par

expr>), s, s2 € L(<msc ref seq expr>), Ip € L(<loop boundary>) and name €

Compositional Transformation of Message Sequence Charts into High—level Petri Boxes 85

L{<msc name>) then S _ is defined as

<mse ref erp>

Semse ref par expr> [p1 par p,] =5 <msc ref seq exprs I

S

Semse ref expr> los] =5 mse ref par erpr> las]
Semse ref (r:l:p’ft)ﬂ”/‘ alt a, | =S5 mse re f par exprs e 101

S mase ref par expr az]

Semse ref par exprs [pi] =S5 mse ref seq exprIP1 J

]

]

<mse ref seq erprs [

S 51] =S mse ref loop exprs sl

N E

[
<mse ref loop expr> sz

vy

amse ref seq erprs [
[

5, seq sz =S
S

D mse ref seq exprs <msc ref loop exprs

LT >

S [loop <n.m> cap Ny, "7 [B < S_, .. ref exprs Texp])

Yamse ref loop exprs

Samse ref loop exprs [nome] =S _pode-name]

where S, S S : nd S) o
where S e vef par exprs+ ° <msc ref seq exprs S g0 ref loop exprs 7C

semantic functions for the translation of the respeciive reference operations. i. e.

par, seq and loop.

The individual stages of an HMSC translation can be soon in figures 3 to 5. Figure 4 shows
the M—net after translating the par expression; figure 5 is the M—net after resolving the loop
expression.

3.3 Basic M essage Sequence Charts

As mentioned above an BMSC-reference is translated like a procedure call. On the other
hand an BMSC resembles again the body of a procedure.

Definition 3.5 Lel p € L(<bmsc>) then S_y, .. [pll is defined as

S bmses [Pl = Nurscpeal B Semse body> il

86

Definition 3.6 Let p € L(<msc body>), i € L(<inst def>), j € L(<msc ref expr>)

and k € L(<inline expr>) then S mse bodys 5 defined as

where S boay> 1S the semantic function for an MSC body.

The M-net Nyscpey is defined in the middle part of figure 6. A new instance of the
referenced BMSC is created or destroyed through the action names M. and M, once the respective
reference is entered. In order to achieve reusability of instance identifiers a stack similar
mechanism consisting of places p2 and pl is modeled. Once an MSC reference is entered by
synchronizing with Mc the next free position is taken from the pool p2 of free stack positions and
the number of currently existing instances in pl is incremented. If an BMSC has finished,
identifier is put back onto p2 by synchronizing with Mr. and pl is decremented.

The semantics of a body of a Basic Message Sequence Chart is obtained by placing all
process instances in parallel together with all MSC references and inlines. Process instances
communicate with each other by exchanging asyn
chronous messages.

S

' msc boday- [

(e f U Int: (licaurmsin) Sinst def.lil) tie AUMsg(p)
| (ljeatreso S cmse referenc ()’>Ujﬂ)
| (ke anzni) S»\(’/:‘/Ll’l,"fl,(f (z:1;p7'>ﬂl‘7ﬂﬂ
where Allinst(p) is the set of all instance definitions in p. AllRef(p) is the set of all MSC
referencesin p and Alllnl(p) isthe set of allinlinesin p; analogously

Sinstdet> » Smecreference> aNA Sinineopr> are the semantic functions for one instance, reference
and inline definition. AllMsg(p) is the set of all

w e.{1 .max_|) C {1, max_1y e{t .max_i}
iict iidi i
ml O {mrind« Sa R B{m Gid)juSuR 4343
]
ek Ief i
Cl) % {1 max_i}

() x {1 max_g () x{1 max_

Compositional Transformation of Message Sequence Charts into High—level Petri Boxes 87

d
;S <inst def- I

Scinst (1(~{f§»ﬂ(fﬂ = S_event e
e

S inst (1(,%'/{:»@‘7 1 = Scevents

Figure 7: From the left: N,,", N, and Nacgion

message and tinﬂ namesin p. Further, it applies to the sets Ref and Inl that
Rt = i |i e AllinstNames(p) A1 € AllRefNames(p)} and Inl =
{i®" i e AllinstNames(p) A r e AllinINames(p)}

Tile precise meaning of functions Scyc reference> aNd X iniineeqr> 18 €xplained by means of an
example in section 3.7.

3.4 Instance

The semantics of an instance is a sequence of a number of events which occur from the top
to the bottom along the instance. The order in which they appear ill the textual representation is
the order in which they are to be executed. We assume that each message event has a unique
name.

Definition 3.7 Let ee L (< event>) and r € L(< inst def >) then Sc s ger> is defined as

d

S<in$def > ”q| = S<e\/ent>

{

S<in$def>|| er ” = S

<event>

<event>

where S qent> 1S the semantic function for instance events.

Definition 3.8 Let bl € L{<event name list>), en € L{<cvenl name>), m €

L{<msg name>) and 1 € L{<instance name>)

S_event=lenout mto i bl = N,
S_event-len in m from i bf] = N,,-

2
S event-laction af] = Notion

88

3.5 Communication, Action and Timer

Asynchronous communication is modeled by the application of the tie—operation in
definition 3.6. Each send event of message m is translated as an M—net N,,,. in figure 7; each
receive event as an M—net N,,..

Definition 3.8 Let bl € L (<event name list>), en € L (<event name>), m € L (<msg name>), i € L
(<event name>)

v .

b((.,,](.gy,i//\)ﬂwz, out mtoibl] = N,
S_epentslen in m from i bl = N,,-

. .

b((f’[/(f’f’,//>uact10n (],/H - *‘\T(L(tl,’ion

where both the sets S and R are defined as S = { L, (BeforeList(bl)|®iid } and R =

{ Lan (iid)| name e IsBefore (m) }. Funcions Beforelist(bl), IsBefore(m) — L

(<event name>) define the set of event names whose meaning is explained in definition 3.9.

The semantics of a timer T i.e. the setting of a timer Setr , a subsequent reset resetr or
timeout timeouty are treated in the same way. We assume that for each timer setting in an BMSC
or inline there is a corresponding timeout or reset event. All timers have unique names.

3.6 Coregion and General Ordering

The purpose of a coregion is to specify unordered events on a process instance that, is within
a coregion all send or receive events may occur in any order even parallel. Only send and receive
events are allowed inside a coregion. According to this explanation the semantics of a coregion is
the parallel composition of all the events defined within the coregion.

Definition 3.9 Let cr € Lf(<coregion>)

S_event=lerl = leecorventstery S epent=lel) tie Ordering(cr)

where CoEvents(cr) isthe set of all message events inside cr and Ordering(cr) is the set of all
message event names which have a before—clause assigned to it.

In definition 3.8 there are the sets Sand R defined. Their meaning and that of definition 3.9
are explained in figure 8 and 9. In the upper part of figure 9 there is the M—net corresponding to
the coregion on the AS System process instance bevor the tie—operation is applied. The receive
event wheel has a before—list bl = {Lprake, Langie;} attached to it, i.e. this message event has to
occur before any of the events in bl. The same effect is achieved in the M—net through the link

Compositional Transformation of Message Sequence Charts into High—level Petri Boxes 89

symbol S= {Lwhed"(x® iid)) with x = |BeforeList(bl)|, i.e. Lwheel puts as many instance
identifier tokens onto the place S e as the cardinality of the BeforeList set. ® is used to relate
an element of a multi—set A to the number of its occurrences in a multi—set over A. On the other

side all message events which appear in any BeforeList are assigned a link symbol L. (iid).

In the MSC of figure 8 this corresponds to the arrows inside the coregion. This is what is
called general ordering since causal ordering among otherwise causal unrelated events of a
coregion can be enforced. It applies to the process instance AS_System that Wheel occurs before
Brake and Angle, but Brake and Angle are unrelated among each other (analogously for Accel and
Srength).

MSC Driving
Remote_Control AS_System
Wheel o j
N .: Angle
Brake :

;
;
. i
N Strength
[y S
Accel ; ;
) bt ;
N
~p Voltage
~»| ag

~.
i

- .

Figure 8: MSC Driving with a coregion

90

TN

[v

TN

Y mex_iy i1 max_i} e {1 max_i:

iid

il
Dinfneet (). sheste((2al)

id i
v {Hstrzngthe(a)Lbrake (a1}
u

]

— e i

| iid i} {angle+{a) Lwheel (a)) id }ivolaige () Lacoel 1a)
! Tid iid

Y Y

R { {1, max_i} N gt maci x{1 max_1} ot max i
— \ g j
sl e i i e
— T

14
4
) eqt max_i i et max_iy
L iid
}{accdl (a)Laccele(a) Lbrake (a)}
{)

e it

- NG
i J;% : i
2 (% max_i} T i) ;
{/\ C)/ B RN & {1 man ¥

//ﬂ, o _ () _ﬂ__\' » /> {1 man_}

i Lwheet 1 iid Lbrake Laccel d y »
aad i g max 1}
\j;(z max 3} C Pt max i} {
N . g | \
N i
e ud ; \
N\ AN ‘ \
/ AN \ \
{ N (2% \\ \
Ny » -
]()wme {af {Librake (a)} Hi{angie(a)} [ristiengtia(ai) 0 (velatgetish
" El i ‘ iid
' v

(/‘>\ nax_| 01 max_ip (w1 max_i) N % {1 max_) D {1 max 1) /O <t ma_if
| - ~
N — — /L ;

\d\\ iid iid

fia i e id
— P

Figure 9: From top: coregion before and after the application of the tie—operation

S OO N A

Compositional Transformation of Message Sequence Charts into High—level Petri Boxes 91

o {1 max_i e{l ma_} e {l maxi} el max_)

ool
i B Y .
}

O

{1 max_

{4
tt

{1 max_i)
a3

“B1ah B2 o) !
e
8

{1 max_i}

e (1.max_i)

MSC Ref

B1al B2
S {1 max_i}

i{1.max) L max i)

m3

{1 max_ij

x{tmax_i)

J

%}a i mox_j
: /%])

OO O ¢

X{mai o xft maxl) k{1 max i x {1 max_j

Figure 10: From the left: MSC Ref, Np, and M—net skeleton for MSC Ref

3.7 Inlineand BM SC— eference

for reasons of a more comfortable modeling MSC’96 is enriched with so—called inlines by which
means composition of small and clear event structures may be defined. They serve as a substitute for
otherwise small sized BMSC—references. In figure 10 there is an BMSC example with one BMSC-
reference expression and inline operator expression. They both are translated in the same way that is all
BMSC-reference and an inline operator expression become processes running concurrent side by side
with the BMSC body. They have the form of Ny in figure 10.

Definition 3.10 Let i € L (<msc ref expr>), n € L (<inline expr name>) and iname € L (<name>)

—

3 NN W

10
11

12
13

14

15
16
17

92

~eventliname reference n i = N,
Seeventsliname par begin n] = Ny,.s
/(),}(),,,z>ﬂ1/1(11r1(> loop begin n] = N,,.;
S_event=liname alt begin n] = N,

where Nyes Structuraly equalsto Ny in figure 6 except for the action symbols Mc(iid) and Mr(iid) which

are replaced by replaced by iname™ and iname® respectivey.

The individual process instances synchronize mutually, similar to a procedure call, all entry into the
MSC reference or inline expression so that they simultaneously enter the body. The same comes about
while termination.

Definition 3.11 Let p € L (<msc ref expr>) the Scnsc reference> 18 defined as

S< msc references Pl = Nl B < S< msc ref exprs [pl]

where Scpscrer opr> 1S defined in section 3.2.

The M—net Ny synchronizes with the corresponding process instances via the reference or inline
names. For this purpose Np is assigned the action set

O = {lltall 12(()//

(BlaltB2)? IH(;HB))}

and

1? - { l”l

(BlaltB2)> 2(131(1/1[37)}

The transition in the middle of the sequence labeled with B is refined with the contents of MSC
reference or inline expression. This can be similar to an HMSC node, a simple BMSC reference or a
reference expression containing alt, par or seq combined sub—expressions.

E-NENVSE)

(9]

e e e
O NP WN—ROWOVWOID

19

20
21
22
23
24
25
26
27

Compositional Transformation of Message Sequence Charts into High—level Petri Boxes 93

Definition 3.12 Let n,m € N, ba € L{<msc body> {alt <msc body>}"), fur-

ther bp € L(<msc body> {par <msc body>}*), b€ L{<msc body>)

S_intine expr-1100p < n,m > begin b loop end | =

NS> v
‘\lm')p [B S

<msce])()d:z/;)ﬂb I]
S

2 canline ('T:I,’;l)‘/‘;Jalt begin ba alt endﬂ - H’iCr'\ll/W/(/)(I/) S<j mse])()([:1/>H7:H

-t

Sinline Crpr> [par begin hp par end] = llicauParin)

Somse body: li]

where AllAlt(ba) is the set of all alternative event definitions and AllPar(bp) is the set of all
parallel event definitions.

This definition has a similar structure as definition 3.4.

4 Comparison to other Work

There has already been a few works attempting to give a formal semantics to MSCs e.g.
[LL93, MR94, Klu97, IT96]. The main determination feature of all these works is less the
semantic domain but much more the MSC model elements considered. The older works are
concerned with the translation of BMSCs only, the recent one [K1u97] with HMSCs. Both [MR94,
KIu97] and annex B of the MSC’96 standard [IT96] translate into a process algebra.

In our work we use a. high-level colored Petri net class— M-nets [BFF'95]. We fully
utilize both features of M—nets: On the one hand it is their algebraic structure and on the other
hand the color of tokens. The former allows us a relatively simple translation of both BMSCs and
HMSC:s, latter allows us to keep the net size small. In contrast to other works we have defined
translation for MSC reference, inline operation expressions, coregion and general ordering. We
have achieved similar results for the translation of HMSCs comparing to [Klu97] especially both
for simple MSC references, MSC reference expresions and parallel frames by one-step
application of the refinement operation.

5 Conclusion

We have showed in this article how to translate MSCs into an executable formal notation
based on M—nets. BMSCs are translated by the composition of small and easy to understand M—
nets to larger M—nets by the application of some few operations. Due to the possibility of drawing
any arbitrary structured HMSCs a compositional approach is not feasible here. Instead of this, we
assign directly to any HMSC a structure similar M—net whose nodes are refined with subnets in
the next step. In order to keep the net size small each referenced BMSC is translated only once.
Different instances of one and the same BMSC are distinguished from each other by different
integer identifiers. Necessity of a colored high—level Petri net class results out of this.

O 01NN B~ W=

17
18
19
20
21
22
23
24
25
26
27
28

29

94

An extension of our approach with temporal restrictions according to [Hau] is
straightforward. Timing restrictions can be assigned to messages, a whole scenario or pairs of
events on a process instance. Restrictions have the form of all interval [sft, 1ft]. Such intervals
specify the lower and upper bounds on the delay of message delivery, execution duration of
whole MSCs or the delay between two consecutive events. Timing information can be used to
deduce additionall causal information or to rule out possible system traces. Since communication
is asynchronous timing restrictions are related always to two events, i.e. two transitions in the M—
net. However, most Petri net classes assign timing information only to one net element class that
is to transitions, arcs or tokens. Two possibilities result from it: Either the restrictions can be
added to the respective net as a set of linear inequalities or the restrictions are split up onto two
net elements. In the former case one gets a new Petri net class, i.e. a new theoretical framework is
necessary in order to be able to combine it with other net classes. In the latter case there is a risk
of inconsistent MSC specification [AHP96] arises. However, this can be analyzed and therefore
avoided.

References

[AHP96] R. Alur, D. J. Holzmann, and D. Peled. An analyzer for message sequence charts. In Alle
Angaben “Uberpr” ufen, number 1155 in Lecture Notes in Computer Memo pages 35 48.
Springer Verlag, 1996.

[BDH92] E. Best, R. Devillers, and J. G. Half. The box calculus: A new causal algebra with multi—
label communication. In Advances in Petri Nets, number 609 in Lecture Notes in
Computer Science, pages 21-69. 1992.

[BFF+95] E. Best, F. Fleischhack, W. Fraczak, R. P. Hopkins, H. Klaudel. and E. Pelz. A class of
composable high level petri nets. In Proc. of ATPN' 95, number 935 in Lecture Notes in
Computer Science, 1995.

[DK95] R. Devillers and H. Klaudel. Refinement and recursion in high level petri box calculus. In
Sructuresin Concurrency Theory, number "Uberpr”ufen in Lecture Notes in Computer
Science, page’s 144 159. Springer Wag, 1995.

[FG97] Hans Fleischhack and Bernd Grahlmann. A Petri Net Semantics for B(PN)2 with

Procedures. In Proceedings of PDSE’97 (Parallel and Distributed Software

10
11
12
13
14
15
16
17
18
19

20

Compositional Transformation of Message Sequence Charts into High—level Petri Boxes 95

Engineering), Boston MA, pages 15-27. IEEE Computer Society, May 1997.

[FG98] Hails Fleischhack and Bernd Grahlmann. A Compositional Petri Net Semantics for SDI. In
Proceedings of ATPN' 98 (Application and Theory of Petrii Nets), number 1420 in
Lecture Notes in Computer Science. pages 144—161. Springer—Verlag, June 1998.

[Gra97] B. Grahlmann. The PEP Tool. In Organ Gramberg, editor, Proceedings of CAV’' 97
(Computer Aided Verification), volume 1254 of Lecture Notesin Computer Science,
pages 440—443. Springer—Verlag, .June 1997.

[Hau] Qystein Haugen. Msc—2000 highlights. http://www.sdl—forum.org/—
MSC2000/MSC2000 files/frame.htm.

[IT96] ITU-T. Message Sequence Chart (MSC). Series Z: Programming Languages, International
Telecommunication Union, October 1996.

[KIu97] O. Kluge. A normal form for composition in msc’96. Master’s thesis, Friedrich—Alexander
Unicersitéit Erlangen—Niirnberg, September 1997.

[KP99] H. Klaudel and F. Pommereau. Asynchronous links in the pbc and M—nets. In Advances
in Computing Science ASIAN’99, number 1742 in Lecture Notes in Computer Science,
pages 190-200, 1999.

[LL93] P.B. Ladkin and S. Leue. On the semantics of message sequence charts. In Formale
Methoden f"ur Verteilte Systeme. Hartmuth K"onig, 1993.

[MR.94] S. Mau and M. A. Reniers. An algebraic semantics of basic message sequence charts. The

Computer Journal, 37(4), 1994.

