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Abstract 

The concern of this paper consists in utilizing the theoretical findings on the field of formal 
compositional semantics, in particular those of high level Petri nets, for the specification of 
communicating embeded systems. Transformation of these approaches, and their evaluation in 
practice occurs with the aid of one of the formal rotation of the UML namely the Message Sequence 
Charts, particularly the MSC’96. Communication requirements of embedded systems are graphically 
specified and then transformed into an executable class of high level Petri nets. 

Keywords: Petri nets, compositional semantics, specification, MSC 

1. Introduction 

Message Sequence Charts (MSCs) have established  themselves as a standard description 
notation for the specification of  comminicating embedded applications as known for example 
from the telecomminication area,. Their propagation found even entry into the UML which is 
becoming more and more popular in the indus-try. Z.120 [IT96] served here as a pattern for so–
called Sequence Charts defined within the UML. The first effort to standardize the semantics of 
MSCs by means of a process algebra was undertaken in annex B of Z.120. As for all description 
notations it also applies to MSCs that a formally defined semantics is necessary in order to make 
conclusions about the system properties or to put it on the same formal basis as another system 
design notation like SDL in [FG98], gaining so the possibility to check them against each other, 
that is to verify whether the designed system meets its specification. 

For two reasons we decided for so–called M–nets as our semantic domain. M–nets firstly 
have an algebraic structure and thus allows a compositional transformation. Secondly there is a 
possibility of a tool based analysis within the PEPTool [Gra97] and the export into another Petri 
net format. 

We proceed as follows: In section 2 we repeat the most important facts about M–nets from 
[BFF+95]. Afterwards, in section 3 we describe the transformation process of MSCs into that 
high–level Petri nets. We begin with the High–Level Message Sequence Charts and go ahead 
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with the Basic Message Sequence Charts then. The transformation is based on the textuell syntax 
description in IT96] and is, due to a better readability, described in the same way as in annex B of 
Z.120 standard. 

2. M–Nets 

In this section we describe the syntactical and semantical domain of our transformation of 
MSCs into Petri nets. We use a special class of Petri nets so–called 

 

Figure 1 : From the left : N1||N2, (N1||N2) sy X and (N1||N2) sy X rs X 

M –nets –– a version of high–level Petri–Boxes [BDH92]. They were developed with the 
goal to give a fully compositional semantics for concurrent program–ming languages and system 
notations. More precise definitions are to be found in [BDH92, BFF+95, DK95]. First, we give, 
soma auxiliary definitions and   repeat the basic definitions concerning the M–nets. 

Let Q be a set, A multi –set over Q is a function µ : Q → Ν0. The set of all finite multi–sets 
over Q is described as Mf(Q). Further we assume the existence of sets Val, Var, A and B of 
values, variables, action symbols and tie–symbols, respectively. Action symbols have arbitrary 
many parameters ar(A) ∈N0. There is a bijective function defined over A called conjugation –  : A 

→A satisfying ∀A ∈  A : A  ≠ A A∧  = A and ar( A ) = ar(A). A construct A(i1,…,iar(A)) is an 
action term if A is an action symbol and VarValiAarjj j ∪∈≤≤∀ :)(1: . The set of all 

action terms is described as AX. A construct )(}|{ ab −+  is a link symbol if Bb∈  and 
VarVala ∪∈ . 

Definition 2.1 An M–net is a triple (S,T,ι ) , such, that S, T is the set of places and transtions 
respectively and ι  is a function  called inscription with domain )()( PTTPTP ×∪×∪∪ such 
that: 
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A marking of an M–net (S,T,ι ), M : S → )(ValfΜ , assigns to each place s a multi–set of 

values from )(sτ . The transition firing rule corresponds to the one of colored Petri nets, i.e. 
transition t is enabled in M if there is an enabling bindingσ   for variables in the inscription of t 
such that there are enough tokens of the appropriate type to satisfy the required token amount and 
the guard ])[( σγ t  is true. The effect of occurrence of t consists in removing tokens from the 
input places and adding tokens to its output places according to )),(( tsι  and )),(( stι  respectively. 

M–nets represent a combination of colored and labeled high–level nets. The net elements i.e. 
places, transitions and arcs axe labeled in addition to types, terms and transition guards with 
auxiliary information which determines the status of each place (entry, exit or internal) and 
assigns to each transition a communication resp. refindment interface. These additional 
inscriptions )(sλ  and )(tλ  were introduced in order to define some compositional operators over 
M–nets [BFF+95]. These are either operators which determine the control flow or the 
communication with the environment. To the former set belongs the sequential, parallel, 
alternative and iteractive composition (;, ||, [] resp. [**]). The later group contains operations for 
synchronous and asynchronous communication, sy bzw. tie. The latter one was introduced first in 
[KP99]. 

As already mentioned above, transitions are labeled with multi–sets of actions. They 
represent the capability to a synchronous communication With the environ ment.  



 
 
 
 
 
 78  資管評論  第十二期   民國九十一年十二月 

   

 

Figure 2: From the left: N and N tie b 

Its mechanism is illustrated by means of the figure 1. Nets N1 and N2 each contains one 
transition with X(., .) resp. i.e. both transitions can synchronine, in respect of X. The result is in 
the middle of the figure. Transition svnchronizaticarr gives rise to a new transition labeled with 

.)},(.,.),(.,{21 XX−+αα  i.e. a sum of the both multi–sets minus the synchronization pair. 
Afterwards, the resulting net is restricted with respect to the action X by the rs–operator 
(restriction). This restriction consists in deleting all transitions labeled with X from the 
net. 

For the explanation of the tie–operator we use a figure 2 from [KP99]. In the left hand part 
of this figure the tie–operator takes an M–net N and a link symbol b and produces an M–
net tie b in the right hand part which is like N but has an additional internal place sb of the 
same type as b, and additional arcs to and from sb. These arcs connect sb to every transition t 
with b+ resp. b-  in such a way that (t, sb) and (sb , t)  arise. The inscription of the new arcs 
corresponds to the argument of the link symbol b. In other words, the tie–operator realizes 
a kind of intermediate storage for information which occurs somewhere in the net. 

Another important operator which we will make use of is a transition refinement 
][ NXN ← . It is allowed only for hierarchical transitions, i.e. transitions labeled with a variable. 

Beyond this, input and output places surrounding the transition to be refined, •• ∪ tt , must be of 
the same type. A precise definition of the refinement operator for high–level Petri–nets is in 
[DK95]. 

3. Transformation of MSCs into M–nets 

In this section we describe our approach for transformation of MSCs into M–nets. For the 
illustration of our approach we use some small examples of an HMSC Ex, MSC Driving and MSC 
Ref  in figure 3, 8 resp. 10. 

The semantic function S translates every MSC into an M–net. In the style of [IT96] the 
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general appearance of S is 

 

with <X> a non–terminal from the grammar of MSC’96 [IT96] and i the actual argument 
representing (part of) an MSC. For example, let Laa ∈21,  (<msc  ref expr>) i.e. two sequences 
of the language derived from the non–terminal symbol <msc ref expr> then a1 and a2 alt a2 are 
valid argument, the latter one representing a sequence constructed from a1 , the terminal symbol 
alt and a2. 

We start with the HMSCs and proceed then in a top–down manner with the BMSCs, 
instances, events and coregions until the references and inlines. Further, we assume that a 
maximum number max_i of possibly concurrent instances1 of one and the same BMSC is given, 
max_i ∈  N and that places without any type inscription carry implictly as their type theset{dot}. 

 

Figure 3: Ein HMSC Ex–Scenario und das zugeh” origes M–Netz 

3.1  MSC–Document 

                                                 
1 Not to confuse with process instances a BMSC consist of. 
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In dealing with MSCs one MSC–document is a combination of High–level Message 
Sequence Charts (HMSCs) and Basic Message Sequence Charts (BMSCs). The HMSCs 
determine the control flow within the scenario and represent a means of abstraction. Therefore 
the meaning of an MSC–document results froth the parallel composition of all referenced BMSCs 
and the M–net of the actual HMSC. All BMSCs are translated only once. Different  references of 
one and the sane BMSC are translated as a sequence of a reference call and termination similar to 
a procedure call in an imperative programming language [FG97]. Thereby it is possible to keep 
the M–net size small. 

 

such that 

 

where sync )}(,|,{ mAllRefNamercMM rc ∈=  is the set of all MSC referrcnce Calls and 
terminations of all referenced BMSCs in m referenzierten BMSCs and where analogous AllBmsc() 
is the set of all BMSC and ExtrHmsc() the set of all HMSC definitions. 

Expression [a : E] is a shortened spelling for (E sy a rs a). 

3.2  High–level MSC 

High–level MSCs describe how a set of BMSCs is combined within a single dia–gram and 
therefore they describe the control flow between several BMSCs. An HMSC is a directed graph 
G= (N, V) whose nodes are either a start symbol, an end symbol, an MSC reference, a connector, 
a condition or a parallel frame, 
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where ><nodeS  is the semantic function for the translation of an HMSC node. 
This means that a start, an end, a connector, a condition symbol and edges between any two 

symbols from NT become places. All MSC reference, a parallel frame and any two edges between 
symbols from NS  become transitions. The resulting M–net is then refined with the meaning of the 
MSC references. 



 
 
 
 
 

 Compositional Transformation of Message Sequence Charts into High–level Petri Boxes  83 

  

  

An example of all HMSC and corresponding M–net are depicted ill figure 3. It describes the 
order of individual BMSCs, namely at first an MSC reference B1 occurs and then a connector 
node comes where the flow branches out either to the reference B2 or to another reference 
consisting of a complex expression. 
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Figure 6: from the left: >< mn
LoopN , , NMSCDed and Nref 

λ∈ L(<msc ref expr> and H be an HMSC, then S<node> is defined as 

 

where AllParHmsc(par) is the set of all HMSCs within a parallel frame par. 
This definition says that a parallele frame is translated by means of the parallel operator ||. A 

reference expression combines a number of MSCs to one and is consequently translated 
according to the following definition (see figures 4 and 5). Finally, an BMSC–reference is 
translated as a procedure call. The net Nref  is in figure 6. 
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The individual stages of an HMSC translation can be soon in figures 3 to 5. Figure 4 shows 
the M–net after translating the par expression; figure 5 is the M–net after resolving the loop 
expression. 

3.3 Basic Message Sequence Charts 

As mentioned above an BMSC–reference is translated like a procedure call. On the other 
hand an BMSC resembles again the body of a procedure. 
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where S<msc body> is the semantic function for an MSC body. 
The M–net NMSCDed  is defined in the middle part of figure 6. A new instance of the 

referenced BMSC is created or destroyed through the action names Mc and Mr once the respective 
reference is entered. In order  to achieve reusability of instance identifiers a stack similar 
mechanism consisting of places p2 and p1 is modeled. Once an MSC reference is entered by 
synchronizing with Mc the next free position is taken from the pool p2 of free stack positions and 
the number of currently existing instances in p1 is incremented. If an BMSC has finished, 
identifier is put back onto p2 by synchronizing with Mr. and p1 is decremented. 

The semantics of a body of a Basic Message Sequence Chart is obtained by placing all 
process instances in parallel together with all MSC references and inlines. Process instances 
communicate with each other by exchanging asyn 
chronous messages. 

 

where AllInst(p) is the set of all instance definitions in p. AllRef(p) is the set of all MSC 
references in p and AllInl(p) is the set of allinlines in p; analogously 

S<inst def> , S<msc reference> and S<inline expr> are the semantic functions for one instance, reference 
and inline definition. AllMsg(p) is the set of all 
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Figure 7: From the left: Nm
+, Nm

- and Naction 

message and timer names in p. Further, it applies to the sets Ref and Inl that 
Ref = )}()(|{ pfNamesReAllrpesAllInstNamiicall

r ∈∧∈  and Inl = 

)}()(|{ psAllInlNamerpesAllInstNamiicall
r ∈∧∈  

Tile precise meaning of functions S<msc reference> and S< inline expr> is explained by means of an 
example in section 3.7. 

3.4 Instance 

The semantics of an instance is a sequence of a number of events which occur from the top 
to the bottom along the instance. The order in which they appear ill the textual representation is 
the order in which they are to be executed. We assume that each message event has a unique 
name. 

Definition 3.7 Let e∈  L (< event>) and r ∈  L(< inst def >) then S< inst def > is defined as 

eS insedef ><       =   eS event><  

reS insedef ><   =   eS event>< ; rS event><  

where S<event> is the semantic function for instance events. 
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3.5 Communication, Action and Timer 

Asynchronous communication is modeled by the application of the tie–operation in 
definition 3.6. Each send event of message m is translated as an M–net Nm+ in figure 7; each 
receive event as an M–net Nm-. 

Definition 3.8 Let bl∈L (<event name list>), en ∈  L (<event name>), m ∈  L (<msg name>), i ∈  L 
(<event name>) 

 

where both the sets S and R are defined as S = { iidblBeforeListLen Θ+ |)(( } and R = 

{ )(|)( mIsBeforenameiidL name ∈− }. Funcions BeforeList(bl), IsBefore(m) ⊂  L 
(<event name>) define the set of event names whose meaning is explained in definition 3.9. 

The semantics of a timer T i.e. the setting of a timer setT , a subsequent reset resetT or 
timeout timeoutT  are treated in the same way. We assume that for each timer setting in an BMSC 
or inline there is a corresponding timeout or reset event. All timers have unique names. 

3.6 Coregion and General Ordering 

The purpose of a coregion is to specify unordered events on a process instance that, is within 
a coregion all send or receive events may occur in any order even parallel. Only send and receive 
events are allowed inside a coregion. According to this explanation the semantics of a coregion is 
the parallel composition of all the events defined within the coregion. 

 Definition 3.9 Let cr ∈Lf(<coregion>) 

 

where CoEvents(cr) is the set of  all message events inside cr and Ordering(cr) is the set of all 
message event names which have a before–clause assigned to it. 

In definition 3.8 there are the sets S and R defined. Their meaning and that of definition 3.9 
are explained in figure 8 and 9. In the upper part of figure 9 there is the M–net corresponding to 
the coregion on the AS_System process instance bevor the tie–operation is applied. The receive 
event wheel has a before–list bl = {Lbrake, Langle}} attached to it, i.e. this message event has to 
occur before any of the events in bl. The same effect is achieved in the M–net through the link 
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symbol S =  {Lwheel+(((xΘ iid)) with x = |BeforeList(bl)|, i.e. Lwheel puts as many instance 
identifier tokens onto the place SLwheel as the cardinality of the BeforeList set. Θ is used to relate 
an element of a multi–set A to the number of its occurrences in a multi–set over A. On the other 
side all message events which appear in any BeforeList are assigned a link symbol −

nameL (iid). 

In the MSC of figure 8 this corresponds to the arrows inside the coregion. This is what is 
called general ordering since causal ordering among otherwise causal unrelated events of a 
coregion can be enforced. It applies to the process instance AS_System that Wheel occurs before 
Brake and Angle, but Brake and Angle are unrelated among each other (analogously for Accel and 
Strength). 

 

Figure 8: MSC Driving with a coregion 
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Figure 9: From top: coregion before and after the application of the tie–operation 
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 1 

Figure 10: From the left: MSC Ref, Nmul and M–net skeleton for MSC Ref 2 

3.7 Inline and BMSC–reference 3 

for reasons of a more comfortable modeling MSC’96 is enriched with so–called inlines by which 4 
means composition of small and clear event structures may be defined. They serve as a substitute for 5 
otherwise small sized BMSC–references. In figure 10 there is an BMSC example with one BMSC–6 
reference expression and inline operator expression. They both are translated in the same way that is all 7 
BMSC–reference and an inline operator expression become processes running concurrent side by side 8 
with the BMSC body. They have the form of Nmul in figure 10. 9 

Definition 3.10 Let i ∈L (<msc ref expr >) , n ∈L (<inline expr name>) and iname ∈  L (<name>) 10 
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 1 

where Nmref  structuraly equals to Nref in figure 6 except for the action symbols Mc(iid) and Mr(iid) which 2 
are replaced by replaced by call

niname  and ret
niname respectivey. 3 

The individual process instances synchronize mutually, similar to a procedure call, all entry into the 4 
MSC reference or inline expression so that they simultaneously enter the body. The same comes about 5 
while termination. 6 

Definition 3.11 Let p ∈  L (<msc ref expr>) the S<msc reference>  is defined as 7 

 8 

where S<msc ref’ expr> is defined in section 3.2. 9 
The M–net Nmul synchronizes with the corresponding process instances via the reference or inline 10 

names. For this purpose Nmul is assigned the action set 11 

 12 

and 13 

 14 

The transition in the middle of the sequence labeled with B is refined with the contents of MSC 15 
reference or inline expression. This can be similar to an HMSC node, a simple BMSC reference or a 16 
reference expression containing alt, par or seq combined sub–expressions. 17 
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 1 

where AllAlt(ba) is the set of all alternative event definitions and AllPar(bp) is the set of all 2 
parallel event definitions. 3 

This definition has a similar structure as definition 3.4. 4 

4 Comparison to other Work 5 

There has already been a few works attempting to give a formal semantics to MSCs e.g. 6 
[LL93, MR94, Klu97, IT96]. The main determination feature of all these works is less the 7 
semantic domain but much more the MSC model elements considered. The older works are 8 
concerned with the translation of BMSCs only, the recent one [Klu97] with HMSCs. Both [MR94, 9 
KIu97] and annex B of the MSC’96 standard [IT96] translate into a process algebra. 10 

In our work we use a. high–level colored Petri net class–– M–nets [BFF+95]. We fully 11 
utilize both features of M–nets: On the one hand it is their algebraic structure and on the other 12 
hand the color of tokens. The former allows us a relatively simple translation of both BMSCs and 13 
HMSCs, latter allows us to keep the net size small. In contrast to other works we have defined 14 
translation for MSC reference, inline operation expressions, coregion and general ordering. We 15 
have achieved similar results for the translation of HMSCs comparing to [Klu97] especially both 16 
for simple MSC references, MSC reference expresions and parallel frames by one–step 17 
application of the refinement operation. 18 

5 Conclusion 19 

We have showed in this article how to translate MSCs into an executable formal notation 20 
based on M–nets. BMSCs are translated by the composition of small and easy to understand M–21 
nets to larger M–nets by the application of some few operations. Due to the possibility of drawing 22 
any arbitrary structured HMSCs a compositional approach is not feasible here. Instead of this, we 23 
assign directly to any HMSC a structure similar M–net whose nodes are refined with subnets in 24 
the next step. In order to keep the net size small each referenced BMSC is translated only once. 25 
Different instances of one and the same BMSC are distinguished from each other by different 26 
integer identifiers. Necessity of a colored high–level Petri net class results out of this. 27 
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An extension of our approach with temporal restrictions according to [Hau] is 1 
straightforward. Timing restrictions can be assigned to messages, a whole scenario or pairs of 2 
events on a process instance. Restrictions have the form of all interval [sft, lft]. Such intervals 3 
specify the lower and upper bounds on the delay of message delivery, execution duration of 4 
whole MSCs or the delay between two consecutive events. Timing information can be used to 5 
deduce additionall causal information or to rule out possible system traces. Since communication 6 
is asynchronous timing restrictions are related always to two events, i.e. two transitions in the M–7 
net. However, most Petri net classes assign timing information only to one net element class that 8 
is to transitions, arcs or tokens. Two possibilities result from it: Either the restrictions can be 9 
added to the respective net as a set of linear inequalities or the restrictions are split up onto two 10 
net elements. In the former case one gets a new Petri net class, i.e. a new theoretical framework is 11 
necessary in order to be able to combine it with other net classes. In the latter case there is a risk 12 
of inconsistent MSC specification [AHP96] arises. However, this can be analyzed and therefore 13 
avoided. 14 
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