

透過經驗模式達成企業流程再造 1

透過經驗模式達成企業流程

An Experience-Based Approach for Business
Process Reengineering

陳逸昌

Yih-Chang Chen
長榮大學 資訊管理學系

Department of Information Management Chang Jung University

Steve Russ
英國Warwick 大學 電腦科學系

Department of Computer Science ,The University of Warwick
Coventry, United Kingdom

摘要

今日大多數商業流程的運作包含了許多隱喻的知識以及人為的活動和思考方式。然而就現階段

而言，這些商業流程裡仍有相當多的層面是無法透過以電腦為主的模組技術或方法來設計。在本文

裡，我們將介紹一種以經驗模式為基礎的方式來進行企業流程的模擬設計。另外我們將描述一個建構

在此模式上的 SPORE架構。SPORE是一個透過情境模式的方法導出系統需求的流程。在本研究中，

我們將這種需求導出分析的架構擴大應用在企業流程再造的領域。也就是透過分散式的電腦模組環

境，讓相關人員在企業再造的流程中有主動參與的角色。本文將以倉庫管理系統為例說明透過經驗模

式達成企業改造的流程。

關鍵字：企業流程再造、企業流程模組、經驗模式、需求工程、使用案例

Abstract

Most business processes rely on informal knowledge and social behaviour but these are areas which
have not, so far, been well suited for modelling with computer-based techniques. We describe a new
experience-based approach to modelling with computers which has natural application to business
process modelling. A framework using this approach, SPORE (situated process of requirements
engineering), is extended to encompass applications to participative BPR (i.e. supporting many users
in a distributed environment). An outline of an application of our methods to a warehouse
management system is included.

Keywords: Business process reengineering, business process modelling, experience-based,
requirements engineering, use case

資管評論 第十三期 民國九十三年十二月 2

1. INTRODUCTION
Modern corporations are faced with a highly
competitive market environment changing at
an accelerating rate. In the early 1990s several
analysts were suggesting that the conventional
incremental style of organisational change was
inadequate for this challenge. To gain
competitive advantage or even maintain market
position, it was argued, would require so-called
‘radical’ change. It had become common to use
the metaphor of ‘engineering’ to describe
change that is planned or designed (cf.
‘software engineering’). So it was natural for
describing this new order of change that
‘Business Process Reengineering’, or ‘Business
Process Re-design’ (BPR) became the
preferred terms. From this perspective it was
crucial that business processes should be
re-designed in a cross-functional process
‘vision’ guided by overall objectives and new
resources, particularly the resources of IT.
There was an optimism for IT reminiscent of
the early days of artificial intelligence: “IT
capabilities …. can work miracles by the
standards of previous generations. How else
but through this technology can we manage our
processes globally, instantly, efficiently, and
correctly? It is clear that no other tools are
comparable.” (Davenport, 1993) However, it
was not to be long before disillusion with the
BPR vision appeared. In 1996 Davenport
himself published an article entitled, Why
Re-engineering Failed: The Fad that Forgot
People in which he admits:

To most business people in the United
States, re-engineering has become a word
that stands for restructuring, lay-offs, and
too often, failed change programmes …
companies that embraced [re-engineering]
as the silver bullet are now looking for
ways to re-build the organisation’s torn
fabric. (Davenport, 1996)

In 1998 it was reported that only around 30%
of BPR projects were regarded as a success
(Galliers, 1998). The earlier promise of BPR
had not been fulfilled. One reaction to this
outcome was to retain faith in IT as a dominant
support and just admit that since it could not
adapt – or at least not at acceptable levels of
cost – then business activities must adapt to IT.
For example:

The pendulum has swung from
‘continuous reengineering and
re-inventing’ to ‘pick an application
package and force our business processes
to comply with the package’. (Riemer,
1998)

Another response was to be more relaxed over
the likely role of IT in business:

IT can often be a catalyst in this process
[of change] and IT opportunities for new
or enhanced products and services should
certainly not be overlooked. (Galliers,
1998)

There are, no doubt, many reasons for the
limited success of the BPR programme. It was
surely over-hyped in the first place. There is
only a certain amount, and rate, of change that
people and organisations can accommodate
while maintaining their basic business
objectives. Most business processes depend
crucially at every point upon people and their
informal knowledge and social behaviour. But
these are areas for which conventional
computer-based techniques are not well suited
and there was, and still remains today, a
substantial gap between the need to model
business process innovations and the
capabilities and mechanisms available from IT
to support the task.

In so far as IT is itself the problem here –
as opposed to the solution it was intended to
be – the problem lies more with software than
with hardware. Hardware developments –

透過經驗模式達成企業流程再造 3

multimedia functions, networks, storage and
processor performance, screen display – have
been impressive over recent years. But
although object-oriented methods have made
an important contribution, the software ‘crisis’
has still not been solved. Taking proper
account of human factors is well known to be a
major challenge for all interactive software.
And the first human factor to be considered is
the requirement of the software system. The
most sensitive and difficult area of software
development lies in requirements engineering.
Should this be a phase with an end-point – as
the programmer would prefer? Or should it be
a continuous evolution – as the customer would
prefer? There are notorious difficulties for
conventional development methods in having
to define, and make a commitment to, a hard
system boundary in advance of any system
development work. For example, a requirement
specification is often referred to as the basis for
a contract between the developer and the
customer. That specification, and contract,
represents the documentation of such a
boundary. At the design level the concept of a
rigid boundary re-appears in making decisions
about the objects or components to be used in
an application program. The difficulties that
affect object-oriented methods in analysis and
design are discussed in (Kaindl, 1999) with
reference to the movement from the problem
domain (real world application) to the solution
domain (world of programs and systems).

In this paper, we introduce a novel,
human-centred approach to modelling and
system development. It is human-centred in
taking seriously the subjective experience of
the modeller – both as a starting point for
model construction and as a guiding principle
throughout development. The central role in
our approach given to observation and
experiment has led to it being called ‘Empirical
Modelling’ (EM). It is not so much a

methodology as a broad outlook on computing
which has far-reaching consequences. Indeed it
can be thought of as a reengineering of the
computing process itself. We describe it in
greater detail in section 3. Then in section 4 we
explain how EM can be applied to BPR. The
main idea here is that it is essential within EM
to take account of the wider context of a
desired ‘system’ in terms of the purposes,
people and other resources which will form the
environment of the system. A problem-oriented
framework SPORE (situated process of
requirements engineering) is described. By
applying SPORE to the software requirements
of a business, possible solutions to problems in
the business domain can be explored in an
open-ended and situated manner. We propose
that the SPORE concept can be extended to
support effective and efficient participative
BPR. Within this framework, people
participating in the business process can create
and use the models as a powerful means of
supporting their collaborative interaction for
‘growing’ solutions, or reengineering processes,
in a distributed environment.

In section 5 a case study applying this
framework to a warehouse distribution system
is discussed. A ‘use case driven’ version of this
case study appears in (Jacobson et al., 1992). In
contrast to the Jacobson version we model
some of the processes as they might have been
prior to the proposed computer system. They
are modelled as a series of interactions between
agents (both human and non-human agents).
The resulting environment is suited to
reengineering the processes through
negotiation between the existing (problem)
situation and possible solutions defined by
requirements for system components (including
software).

資管評論 第十三期 民國九十三年十二月 4

2. BUSINESS PROCESS
REENGINEERING

We sketch here an outline of some of the issues
and problems involved in BPR. Although this
discussion is brief, we hope it will be sufficient
to show the relevance and potential of the
approach (EM) that we describe in later
sections.

2.1 The Key Concepts

In 1993 two key publications (one by Hammer
and Champy, another by Davenport) brought
widespread attention to the emerging field of
BPR. The very concept of ‘business process’
required a re-orientation of managers’ thinking
about their business activities. It is defined by
Hammer and Champy (1993) as ‘a set of
activities which produces an output valuable to
the customer’. This concept cut across
traditional boundaries in the structure of a
business (e.g. departments, sections, functions).
For example, the process of new product
development cut across departments for R&D,
for manufacturing and for marketing. Then
‘reengineering’ meant discovering how a
process currently operates, re-designing that
process to improve efficiency and remove
wastage, and finally implementing the new
process using whatever enabling technology
was appropriate. The force of the new
terminology was to draw attention to a
perceived need for ‘radical change’, not mere
‘improvement’. The scale of change envisaged
by the term ‘reengineering’, or ‘innovation’ as
preferred by Davenport, is described as
follows:

Objectives of 5% or 10% improvement in
all business processes each year must
give way to efforts to achieve 50%, 100%,
or even higher improvement levels in a
few key processes. (Davenport, 1993)

The lesson we take from this is that when the
business context and resources are changing
rapidly, radical change may need to take place
regularly. In order to model such changes
effectively with computers we require
environments with the greatest flexibility.

2.2 Participative BPR

BPR seeks to devise new ways of organising
tasks, organising people and making use of IT
systems so that the resulting processes will
better support the goals of the organisation.
Vidgen et al. (1994) define the central tenets of
BPR as:

1 radical change and assumption challenge;
2 process and goal orientation;
3 organisational re-structuring;
4 the exploitation of enabling technologies,

particularly information technology.

Thus, BPR has more of an organisational focus
than a technical one. The effort is directed at
changing people’s thinking and must therefore
take into account expectations and viewpoints.
The process view of the business activities
involved in new product development, for
example, reflects the customer’s viewpoint
more than the producer’s viewpoint.

While the thought of the scale of change
mentioned above by Davenport might be
intoxicating for managers to consider, it is
likely to be a less exciting prospect for those
employees who are directly driving such order
of magnitude changes in performance. Thus
Sherwood-Smith (1994) advocates a less
strident form of BPR which is people-centred
and driven by needs, rather than by IT.

Administrative systems involving people
should not be reengineered, they should
be participatively re-designed.
(Sherwood-Smith, 1994)

透過經驗模式達成企業流程再造 5

Such a participative approach respects the
culture and social context of an organisation.
This demands a high degree of communication
and evaluation. In reference to CASE tools
supporting BPR, Sherwood-Smith continues
(in the same paper):

Because we believe Business Process
Re-Design is essentially a group activity
and should be participative, one key
aspect of the tool set is that it must run in
a collaborative environment.

This sentiment is an exception to what seems to
be the more usual undemanding and uncritical
attitude to IT from authors on BPR. Available
software resources are often accepted as given
and their limitations go uncommented although
it is, we suspect, precisely their profound
limitations that are a significant factor in the
‘failure’ of some BPR efforts. Many current
applications are designed in a ‘take it or leave
it’ fashion which is inappropriate to a rapidly
changing business environment. With frequent
mergers and outsourcing of activities
businesses need computing environments
which support unforeseen changes in needs and
can exploit opportunities as they arise. The EM
approach creates such environments and they
support collaborative working.

2.3 Modelling Business Processes

Organisations and their business processes are
complex. Understanding anything involves
making some kind of model of the thing in our
heads. Thus a fundamental motive for
modelling business processes is to help
understand them. It is controversial in the BPR
literature exactly how much understanding of a
process is necessary or desirable prior to its
re-design. Hammer and Champy (1993) argue
that a very detailed analysis of process is not
needed because the goal of the reengineering
effort is not to improve the existing process but
to design a ‘totally new and superior design’.

As both Hammer and van Meel et al. have
observed most business structures have not
been designed at all, but have simply
‘emerged’. But such evolution has occurred in
a social and technical context that is not
arbitrary. There are usually reasons for the way
things emerge and sometimes they turn out to
be very important reasons (that are only
discovered after a disastrous re-design!). So we
take the view that in the case of processes of
any complexity it is important to have as
thorough an understanding of the process as
possible. It is only then one can dare
responsibly to propose a really new design.
Since this is a controversial issue we note that
(Jacobson et al., 1995) supports our view. In a
chapter devoted to this theme (‘Reversing the
Existing Business’) they write:

… we do believe that you need a good
picture of your current organization
before you can finally decide on the best
way to change it. If the reengineers
understand the business as it is today,
they will be able to avoid making
unfeasible change proposals. (p.153)

Modelling a business process helps us to
understand it and so to re-design it. In a
comprehensive, Germanic style the modelling
task has been described as follows:

Modelling business processes first means
to express the flow and the dependencies
of steps in the respective processes in
order to make the dynamic behaviour
explicit, to be able to communicate it, to
analyse it with respect to possibilities of
improvement, and to use it for
simulations as well as for controlling
automated workflow. (Schader and
Korthaus, 1998)

This statement effectively summarises the four
‘requirements’ of a modelling method for BPR
given by Gerrits (1994). Gerrits emphasises the
role of simulation both for assessing the quality

資管評論 第十三期 民國九十三年十二月 6

of the models of the current situation on the
one hand, and the performance of the
re-designed processes, on the other hand.

According to van Meel et al. (1994) the
methods for achieving business engineering
given in the literature ‘roughly follow the
pattern of general problem solving’. To offer
more support for BPR these authors suggest a
model-based problem solving approach
summarised in Figure 1. The term ‘empirical
model’ used by these authors means something
very different from our usage in EM as
described in section 3. For example, the van
Meel empirical model is a text-based version of
a conceptual model; an EM model is a
computer-based version of an experiential
model. Nevertheless there are striking
structural similarities between the van Meel
approach and ours, for example in the notion of
an experimental, correspondence check
between the model and the problem situation.
We mention this approach also because the
framework here of problem situation and
solution [space] is a recurring and unifying
theme of our approach. It is one that has
recently been used in EM work on
requirements, and we apply it in this paper for
the application of EM to BPR.

2.4 Object-Orientation and Use Cases

The emergence of BPR in the early 1990s
coincided with a dramatic rise in claims and
interest in object-oriented methods of software
development. There was unprecedented
investment in OO by industry and huge
co-operation between industries to establish
standards and tools for OO (e.g. the formation
of the powerful Object Management Group).
There was a mushrooming of textbooks and
obligatory courses on OO academia. Since
BPR laid emphasis on exploiting the resources
of IT, it was natural that those in charge of
reengineering projects should turn to OO

methods. Among many others the series of
well-known works by Jacobson and his
co-authors (e.g. Jacobson et al., 1992; Jacobson
et al., 1995; Jacobson et al., 1997) no doubt
helped to forge these links between BPR and
OO approaches to system development. The
‘use case driven’ development method for
software was the subject of the first work, then
it was applied in (Jacobson et al., 1995) to the
modelling of business processes. A use case is
literally a ‘case of use’ of a proposed or
existing system and refers to some specific use
by an ‘actor’ (a role of a potential user of the
system). It is a sequence of events
corresponding to some function of the system
useful to the user. At one level such a sequence
or ‘course’ of events corresponds closely to a
(business) process. At a lower level of
abstraction it may, in some cases, also
correspond to a functional requirement for a
software system. The collection of all use cases
constitutes the use case model which is a major
part of the requirements model in Jacobson’s
software development method.

Conceptual Model

Problem
Situation

Empirical

Conceptualisation Specification

Correspondence
Check

Consistency
Check

Solution
Finding Implementation

Solution

Figure 1. The Process of Problem
Solving (source: amended from van

Meel et al., 1994)

透過經驗模式達成企業流程再造 7

Schader and Korthaus (1998) draw
attention to the range of attributes (e.g.
‘iterative’, ‘use case driven’, ‘incremental’)
which can apply equally to both software
development and business modelling. As
Warboys et al. (1999) state:

Both the business process practitioner
and the software process modeller have
much in common ….. One has to design
dynamically changeable and efficient
processes, and the other the process
knowledgeable software to support them.

Another link between BPR and software
development lies in the common pattern of
negotiation between a problem situation and a
solution space. In BPR, this is reflected in the
optimum level of goal satisfaction in the light
of resources available, and in software, in the
ongoing evolution of a requirement. In a way
similar to the work of Jacobson et al. (1995),
Nurcan et al. (1998) also try to identify and
describe business processes by use cases and
scenarios. They describe the relationship
between the business process and a use case as:

A use case specification comprises a
description of the context of the BP, the
interactions between the agents involved
in the BP, the interactions of these agents
with an automated system supporting the
BP and attached system internal
requirements.

It is now widely recognised that the concept of
use cases is independent of object-orientation.
But both ideas, highly influential as they have
been over the past decade, have also not been
without their critics. We have already
mentioned (Kaindl, 1999) for drawing attention
to the deep problems, for long generally
unacknowledged, that arise when representing
informal objects in an application domain by
formal objects in the programming domain.
Among others, the series of papers by Simons
(e.g. Simons, 1999; Simons and Graham, 1998;

Simons and Graham, 1999) describe some of
the serious semantic confusions surrounding
use cases and object modelling.

We share with conventional methods for
system development the aim of harnessing
computer power to solve problems and do
useful tasks. But we are doubtful that there are
universal ‘methods’ for doing this and doubtful
that the required behaviour of a complex
‘system’ can successfully be prescribed in use
cases in advance of the construction and use of
the system. This seems to us particularly true
of volatile contexts with a high dependency on
human factors – such as many business
processes. This radical, and perhaps immodest,
scepticism is one motivation for building
models in the way we do in EM. Our ultimate
aim is, indeed, to develop useful systems, but
to do so we suggest the need in general to take
a more roundabout, indirect route. We need
first to understand what will be useful and how
this might change. For this we need to model a
wider context than that of the future system
itself and EM offers the possibility to do this.

3. EMPIRICAL MODELLING: AN
OVERVIEW

Empirical Modelling (EM) is an approach to
computer-based modelling that has been
developed at the University of Warwick since
1983. In this section we will give an overview
of EM and summarise how our approach
differs from conventional modelling methods.

3.1 Principles

The EM principles are based on the concepts of
observation, agency and dependency. The
initial analysis of a domain to be modelled is
made by identifying observables considered
relevant by the modeller. Then these
observables are grouped around the agents
regarded as ‘centres’, or sources, of change in

資管評論 第十三期 民國九十三年十二月 8

those observables. The other source of change
in the observables is where there are
dependencies holding between them expressed
by definitions. These are ‘law-like’
dependencies like Newton’s law, the physical
constraints of rigidity in a solid material, or the
conventions of when a game has been won. All
these identifications (of observables,
dependencies, and agents) are provisional and
subjective: they represent the viewpoint of the
modeller. The dependencies between
observables are expressed in definitions. A set
of definitions – a definitive script –
corresponds to a single state of the model. Any
particular state of the model should directly
correspond to a possible state of its external
referent. EM is an agent-oriented approach.
That is, a key idea is to attribute the
state-changing activities that do not arise from
dependency maintenance to agents which are
associated with certain observables. Here an
agent can be a human actor or any other
state-changing component or device. The
identification of agency and dependency is
based on previous knowledge and experience,
and supplemented by new observation and
experiment.

There is therefore a primary emphasis in
EM on state, not in a public sense but
state-as-perceived-by-agent, or
state-as-experienced. It is for this reason that
we describe our approach as
‘experience-based’. This distinguishes EM
from many conventional approaches to
modelling in which concepts of state are taken
for granted and more attention is given to
reproducing desired behaviours. The use case
driven method mentioned in section 2.4 is an
example of this emphasis on behaviour.

3.2 Techniques

The main technical focus of our modelling
approach is the so-called interactive situation
model (ISM). An ISM is open to experiment in
much the same way that its real world referent
is open to experiment. That is, we can devise
changes in the ISM, introduce new factors, and
have direct experience of the results in any way
we choose at the time. This leads to patterns of
interaction, and a quality of close human
engagement in the interaction which is unusual
in computer-based models with the major
exception of spreadsheet models. The concept
of an ISM in fact generalises the spreadsheet in
several radical ways (Rasmequan et al., 2000).
The word ‘situation’ in ISM refers to the fact
that the model is rooted in a concrete context
that affects the modeller’s expectation and
interpretation. The model is partial, but not
disconnected from the physical world.

All EM models, and conventional
spreadsheet models, are examples of ISMs.
These models incorporate the agency and
dependency revealed during the analysis and
construction processes. At the same time they
maintain the correspondence between the
values of variables in a definitive script and the
values of observables perceived by the
modeller in both the model and its referent. So
each state of the computer model may be
directly perceived alongside the corresponding
state of its referent. There is no preconceived
systematic process to be followed in analysing
a domain and constructing the ISM. That is, the
modelling activity is genuinely open-ended,
observations may agree or disagree with
expectations and thereby affect further
construction. An ISM always presents only a
partial and provisional artefact to the modeller.

3.3 Notations

透過經驗模式達成企業流程再造 9

The roles of agents are documented using a
notation that classifies observables as follows:
those whose values act as stimuli for action
(oracles), those that can be conditionally
redefined (handles), ones whose existence
depends on that of the agent itself (states), the
relationships between observables representing
the interaction between the agent and its
environment (derivates), and the privileges of
agents for state-changing action (protocols).
We record these observations in an informal
but structured notation known as LSD. Such an
LSD account reflects the internal perspective of
each agent in the account together with the
external perspective of the modeller. Such an
account is not essential but can be useful
throughout the construction process. It can be
maintained and refined while the main scripts
are being developed.

The definitions, representing
dependencies, play a central technical role in
EM. A typical definition takes the form of

x is f (a, b, c)

where x, a, b, and c are associated with
observables in the referent. The variables a, b
and c are defined elsewhere in the script and f
is some operation which reflects the perceived
dependency of x on a, b and c. The operation f
will usually be some user-defined function.
Such a definition is a one-way dependency
rather than a constraint. It expresses the fact
that changes in a, b and c will result in
indivisible change in x; the ‘is’ in the definition
is a keyword indicating that this dependency
will be maintained automatically. The values of
variables represent the observed state from the
point of view of the modeller. Changes of state
occur either through re-definitions or the
addition of new definitions. A script containing
many definitions may have hundreds of
automatic updates arising from a single
re-definition. A simple event or action will

typically be represented as a collection of
several re-definitions grouped together. The
notations providing all these facilities are
known collectively as EDEN. They comprise a
general purpose definitive notation together
with other notations for line drawing and
window management. These three notations
can be used freely together in the construction
of models. There is some limited assistance to
users for the management and debugging of
scripts but EDEN is primarily a research tool –
it supports the principles of EM but lacks the
robustness, efficiency and consistency needed
for general end-user development.

3.4 The EM Modelling Process

There is a fundamental difference between EM
and conventional modelling in the way the
modeller interacts with the state of the model.

Computer
Model

Referent

Agent
Agents

x

y

State A

State B

Redefinition
(■ is ~~~)

Variable (■)

Definition
(■ is •••••)

Observable

Dependency

Agent
Action

Agent
Action

Situation

Figure 2. Structure of the Model

■ is •••••
■ is •••••
■ is •••••
••••••••••
■ is •••••
■ is •••••
■ is •••••

■ is •••••
■ is •••••
■ is •••••
••••••••••
■ is •••••
■ is ~~~
■ is ~~~

x

A
y

B

資管評論 第十三期 民國九十三年十二月 10

In a procedural, or object-oriented, language a
door object, for example, would be defined
with attributes and methods carefully planned
in advance of being programmed. These
attributes (e.g. dimensions and manner of
opening) and methods (e.g. for changing
position and for display) form the door data for
manipulation in the computer model. That data
determines in advance the complete state space
of the door and all possible interactions with
the door. The program can, of course, be edited
and re-compiled. But it remains an inherent
feature of the paradigm that the program forms
a boundary within which state and interaction
must be preconceived. The interpretation of
program state (even in the presence of
visualisation) must take place across this
boundary. That is, interpretation involves an
association between real-world observations
and program abstractions. The validity of this
association – which depends on such factors as
context and purpose – generally requires
human judgement. The computer’s
manipulation of data is oblivious to such
matters and when exceptions and errors arise to
render an interpretation invalid, major
prob

The association required for interpreting the

lems are likely.

Within EM the language for the
description of state is the language of
observables. The state of the model is
presented to the user by a perceptual process
that is of the same kind as that by which we
apprehend state in the real world. There is, then,
a comparability and connectedness between
observations of the model and observations of
its referent. This comparability is lacking in
conventional computer modelling because
there the ‘observation’ of the model is the
reading of an abstracted value, or the
preconceived interpretation of a
preprogrammed display. The real-world
observation is a subjective, situated experience.

model is therefore an association between two
things of quite different kinds.

There are three features of an EM model
that give the comparability referred to above a
special leverage. The link between the
observable and a variable in a definition is
direct and simple. This contrasts with the
situation in many procedural programs where
the interpretation of variables and their states
can become highly problematic. We
acknowledge that the variables in a definitive
script must have the ‘abstracted’ quality we
referred to above in connection with
conventional programs. But this is a ‘limited
abstraction’ in which the connection between
the concrete and the abstract is deliberate and
familiar – like that in the use of natural
language for description of the world. As
described in (Beynon et al., 2002):

There is a fundamental mismatch
between abstract data that is interpreted
by the human in direct association with
its counterpart in the real-world referent
and situation, and abstract data that is
manipulated according to computational
rules that can only take account of
prespecified and preprogrammed features
of this association.

The second feature is that the observation of
the model is through a visualisation which is
indivisibly linked to the script of the model.
The very definition of a line in the line-drawing
notation in EDEN is accompanied by its
display, just as the existence of a physical edge
in the field of vision of a person with normal
faculties is automatically accompanied by its
perception. The combination of the directness
of these two features make for the third
feature – the quality of interaction offered in an
EM model. There is no preconceived limitation
in the revisions the modeller may make at any
time in the model and there is a built-in
coherence and integrity to all interactions

透過經驗模式達成企業流程再造 11

which invoke dependencies. There are some
kinds of interaction where there are automated
actions from which the human user is excluded.
This is appropriate where there are specific and
clearly prescribed functions – for example,
when using a canned drink dispenser or a
washing machine. In such interactions we do
not wish for more flexibility or more scope for
human intervention. But it is when there is no
such function to be prescribed – for example,
in conversation or driving a vehicle – when the
‘purpose’ of the interaction is to explore or
experiment, that we need a different kind of
interaction: one in which the participants can
have a close and continuous engagement with
each other. It is this latter kind of interaction
which – in principle, if not yet always in
practice – is offered in an EM model.

Closely allied with the difference just
described concerning interaction with state is
another fundamental difference between EM
and conventional modelling. This is the way
change of state takes place. In a conventional
program change methods must be planned and
preconceived as described above. The control
of change is ‘handed over’ to actions within the
program boundary. When these actions are
complex and the context alters, or error
conditions occur, it may be very hard to make
the appropriate changes. In an EM model
change either occurs as a dependency update
which should always have clear and simple
real-world semantics – maintaining the
integrity of state – or the change occurs as a
direct action of an agent. Initially, except in
very simple predictable circumstances, this will
be a human agent. Only when certain patterns
of change have been experimented with and are
known to be operating with reliability over a
wide range of local states can those patterns be
delegated to an ‘automated’ agent action.

The agency concept is a much more
primitive one than that of control structures in

conventional programming. But it is a very
general and powerful notion that allows EM to
encompass many conventional paradigms for
programming and state change. Furthermore,
the notion of dependency is a natural way to
preserve the integrity of state change, and the
real-world semantics of interaction, in a direct
and comprehensible fashion.

 While observations of the computer
model in EM have a qualitative similarity to
observations of the world, they are inevitably
limited by properties of the interface (e.g. size
of pixels on display) and typically require the
use of visual metaphor to supplement direct
observation. For the sake of understanding a
domain, the faithfulness of experimental
interaction matters more than the faithfulness
of the representation. For example, in
understanding electrical circuits the iconic
representation of components, together with
selected measurements is preferable to
photographic images of components and
comprehensive measurements.

Finally in this section we mention three
further differences between EM and
conventional modelling. Firstly, there is really
no counterpart in EM to the ‘planning’ phase
mentioned at the beginning of this section with
regard to the example of a door object. This is
because such early conceptual modelling in
EM can conveniently be directly put into a
script with a visualisation and experimented
with on the computer. Secondly, the
experimentation referred to here, and in
relation to the establishment of reliable
components mentioned above, corresponds in
some measure to the testing of conventional
models or programs, but it is significant that
this testing occurs here in advance of any
commitment to a particular form of program.
And thirdly a further symptom of the
difference in approach of EM is the stage at
which we consider an interface to a desired

資管評論 第十三期 民國九十三年十二月 12

system. It is typical of rapid prototyping
approaches to offer a ‘mock-up’ of an interface
to a future system at an early stage. We see an
example of this in the use case description
given on p.351 of (Jacobson et al., 1992). In an
EM development it is typical that the interface
is left until an advanced stage of the
development – when the purpose and
requirement has been clarified through
extensive use of the very open-ended phase of
model construction and exploration. Table 1
summarises a comparison between Jacobson’s
use case approach and Empirical Modelling
technique.

4. APPLYING EM TO BPR

4.1 The Wider Context

Having surveyed some of the issues and
problems presented by BPR (section 2), and
reviewed the broad approach to computation
and modelling that is EM (section 3) we now
turn to showing how the principles and tools of
EM are well suited for application to BPR.
Business engineering calls for technical
support at two levels that we shall call the
cognitive and the operational. The cognitive
level corresponds with the essential processes
of understanding the business as a whole, its
place in the wider world, and the place of
existing processes within the whole. Such
understanding is pre-requisite to any
reengineering of processes. The operational
level refers to the provision of systems which
workers can use to perform business activities
effectively and efficiently. We envisage that
such systems will typically comprise people as
well as software components and other kinds of
device. Object-oriented business engineering
seeks (as EM does) to provide a common
framework for both the cognitive and
operational levels of support.

There has been a multitude of approaches
to implementing BPR and even within the OO
approaches Jacobson's is one among many. We
used the terminology and concepts of
Jacobson's work in section 2.4 above because it
is well known and illustrates many of the issues
surrounding the use of technology for BPR. In
that section use cases are described as
corresponding at one level to business
processes, and at another level to the functional
requirement of software systems. How we
understand the relation of business processes to
software systems is crucial for understanding
the potential contribution of EM to BPR. Part
of Jacobson’s viewpoint is (Jacobson et al.,
1997):

The object-oriented business engineering
models are similar in spirit to those of
Object-Oriented Software Engineering
(OOSE). The biggest difference is that
the ‘system’ being modelled is now a
business organization instead of a
software system.

Adopting the viewpoint of EM we would claim
that modelling a business organisation and
modelling a software system are not so very
different. But we are approaching the
difference that does exist from the opposite
direction to that of an OO approach. Our
principles and tools very directly support the
modelling of a collection of agents performing
structured activities in an open environment
where unforeseen changes may occur at any
time. This is a description which maps onto a
business environment more naturally than that
of a software system. It is also plausible that
many software systems can be viewed as
circumscribed special cases of business
processes. Thus when approaching the
application of EM to BPR we are not
immediately confronted with the usual
mismatch that arises when the informal

透過經驗模式達成企業流程再造 13

problem world (of business) meets the formal
solution world (of programming).

In OOSE, the collection of all use cases,
each associated with an actor, forms the use
case model. Such modelling is the major
technique used in the early stages of Jacobson's
approach to offer cognitive support to business
engineering. It relies on extensive textual
description and the use of the wide range of
diagramming methods offered in the Unified
Modelling Language (UML). These documents
and diagrams record the understanding and
imaginative work of participants in the
business and of system analysts. When
bringing EM methods to bear upon problems of
BPR an important difference in comparison
with a UML approach is that these early
conceptual visions and insights can be directly
supported and embodied in the building of our
computer artefact. Documents and diagrams
may, of course, still be important for
contractual, auditing and explanatory reasons
and these can be developed in parallel with the
artefact construction. But the benefits of having
an evolving and shareable computer model
from the outset of conceiving a system – for
the sake of communication, for monitoring and
validating requirements, for smooth system
development, and so on – are obvious and
substantial.

The use case model is a major part of the
requirements model in OOSE. The elaboration
and maintenance of the requirements for a
system is central for any further development.
It plays a key role at both the cognitive and
operational levels. We have always seen the
issue and challenges of requirements for
modern systems as an area of natural
application for EM to conventional software.
We now turn in the next section to an EM
perspective on the evolution of requirements.

4.2 The SPORE Framework

A major theme of this paper is the need to
consider the larger context of the processes we
are interested in and are modelling. In a
business application, this means including the
objectives of an organisation, the viewpoints of
the people concerned in any particular process,
and the motives, knowledge and expectations
of users of systems being considered. The
application of EM requires us to widen our
focus from an intended computer system to
include the entire business processes (the
environment) and the people involved (the
human factors). It also means shifting our first
attention from software requirements to
business requirements. The former should be a
result of the latter.

The framework that is described in more
detail in this section is primarily directed
towards requirements. But by ‘requirements’
we do not mean the elicitation and formulation
of required behaviour. Instead we have in mind
the embodiment of the requirement. That is, a
computer model which exhibits, through
visualisation and interaction, the behaviour and
features of the system or solution required. We
are not primarily concerned here with textual
specification of the requirement (although this
would not be difficult to produce on the basis
of such a model). It is a feature of EM that the
conventional phases of system development
(specification, design, implementation, testing
etc) tend to be conflated and are continuously
elaborated during the evolution of our models.
It is for this reason that we sometimes speak of
‘cultivating requirements’ in the same breath as
‘building an ISM’; they are the same process
viewed from different perspectives. So the
building of an ISM is somewhat like building a
prototype – although not one that is thrown
away – but one that is elaborated and can be
refined and optimised into a final useful
system.

資管評論 第十三期 民國九十三年十二月 14

SPORE is a problem-oriented framework
in which requirements – viewed as solutions to
the problems identified in the application
domain – are developed in an open-ended and
situated manner. Within this framework,
people participating in the requirements
engineering process are able to cultivate
requirements through collaborative interaction
with each other aimed at solving the identified
problems, rather than searching for
requirements from the ‘jungle’ of user’s needs
(Sun et al., 1999). For a given application, a
family of artefacts or interactive situation
models (ISMs) are developed which form the
medium for the problem-solving process of
requirements cultivation.

The SPORE framework for building
situated models for the requirements
engineering process is depicted in Figure 3.
The inputs of the SPORE model are:

5 Central problems of the domain which are
identified by the participants with
reference to their concern for the
functional and non-functional
requirements of the developing system.
The identification of problems can occur
at any time during the process and is
rarely regarded as completed.

6 Relevant contexts, such as the
organisation’s goals and policy and the
relationships between participants, act as
motives and constraints for the
participants in creating the outputs.

7 Available resources, such as documents,
technology and past experiences of
participants, are used to facilitate the
creation of the SPORE model’s outputs.

The four kinds of outputs from the SPORE
model are: provisional solutions which are

developed by participants on the basis of the
available resources and the relevant contexts.
The other outputs, including new contexts, new
resources and new problems, combine with
their earlier versions and form new inputs for
creating the next output. That is, all these
contexts, resources and problems, even during
the development of solutions, always remain
modifiable and extensible. In view of this,
participants can develop requirements in a
situated manner to respond to the change in the
contexts, resources and even the problems
themselves. Thus this framework addresses the
fact that requirements may be changing all the
time and can rarely be regarded as complete.

The nature of the SPORE framework is
iterative and incremental which means that the
ISMs are built in a sequence of structured
development cycles, each of which is adding a
new portion to the whole model. The delivery
of small increments allows continuous
feedback and evaluation of the progress
achieved.

This experimental interaction is
particularly powerful because the participants
can interact with each other as well as with the
model. Using network facilities the interaction
of a participant can be propagated to the
artefacts of other participants and consequently
affect their insights. Within SPORE all
computer models of participants can be
connected together. When definitions are
propagated they first change the visualisation
of other participants’ artefacts (given suitable
authorisation) and subsequently may alter their
insights as well. So participants can
collaboratively interact with each other through
their artefacts.

透過經驗模式達成企業流程再造 15

In such a collaborative environment, a
working understanding of the key problems
and their solutions, i.e. requirements, can be
established. This working understanding can
then be cultivated, i.e. grown incrementally,
through the successive interaction between
participants for exploring and integrating
individual insights. On the whole, greater
consistency between the individual insights
indicates improved mutual understanding. For
this reason, participants will continually refine
their interaction with a view to achieving
greater coherence and consistency.

4.3 Using SPORE for Participative BPR

We have emphasised in the previous section
the importance of gaining a shared
understanding of problems – or at least a
working understanding of them – in order to
negotiate towards consensus and agreement on
their solutions. No doubt people and
organisations have always sought to do this,
but predominantly by using natural language,
diagrams and, possibly, physical artefacts. We
suggest that computers, when viewed in the
broad perspective described in section 3, are
now allowing us a new means for sharing
understanding and knowledge. What we are

aspiring to do in EM, and with the SPORE
framework, is to introduce a powerful
electronic modelling medium for the shared
construction of artefacts that can faithfully and
flexibly embody existing, and planned, real
world systems. This embodiment, which
exploits the physical aspects of computers, has
far-reaching consequences. There is a
continuous evolution possible from an original
conception of a system to a useful developed
form. It also means this evolution is at all times
open to revision and interaction, with
immediate feedback. The feedback may be in
the form of direct experiential knowledge as
well as more conventional propositional and
mathematical representations. Any EM model
with visualisation is such an embodied artefact,
or an ISM as we have described it in earlier
sections (sections 3.2 and 4.2).

A family of ISMs built in the SPORE
framework can be regarded, according to the
patterns of interaction invoked, as a
requirement (when we interact in the roles of
particular users), or a system (when we interact
in the ‘roles’ of key components, or agents in
the EM sense, and so are exploring the internal
structure of the model), or a business process
(when we interact in the roles of workers,
markets, suppliers etc). It is such flexibility of
interpretation – according to style of
interaction – that allows the SPORE framework
to be naturally applied to BPR.

Contexts
New Contexts

Identified
Problems At the end of each subsection of section 2,

we gave some hints as to how EM might
contribute to BPR. We now gather those
together in the light of the above. For section
2.1 we have already indicated the unusual
flexibility of ISMs to accommodate unforeseen
and arbitrary changes in an environment. In
section 2.2 we stressed the importance of the
key problem that many have diagnosed with
conventional BPR: namely the difficulties, and
yet necessity, of truly involving all relevant

Provisional
Solutions Requirements

Cultivation

New Identified Problems New Resources
Resources

Figure 3. The SPORE Framework

資管評論 第十三期 民國九十三年十二月 16

people in a reengineering process. EM is a
human-centred approach which now has tools
supporting distributed working with
sophisticated modes of communication1. The
same benefits of working participatively on
requirements that we mentioned in section 4.2
naturally carry over to any BPR application.
Many of the features of business process
modelling that are highlighted in section 2.3,
for example, making dynamic behaviour
explicit, being able to communicate it and
analyse it, have been addressed already, albeit
briefly. The use of modelling for simulation
and control of automated workflow can be seen
in our case study example in section 5.3. The
framework of problem situation and solution
space also described in section 2.3 as
appropriate to BPR is adopted in SPORE.
Finally, the need to implement reengineered
processes by means of building systems, and
the way this has been done using OO methods
are sketched in section 2.4. The reservations
expressed there about OO methods and the
need for a wider context have now been
amplified. We believe we can derive useful
systems directly from our artefacts although we
have only limited experience so far of doing so,
and only with small scale examples. Some
indications of how this can be achieved are
given in (Beynon et al., 2000).

1 That is, through the four interaction modes by the

distributed version of EM tool – dtkeden, the
‘communication’ among modellers within a
distributed environment is achieved under the SPORE
framework: (1) The broadcase mode: any message
sent to the server will be propagated to all other clients.
(2) The private mode: each client has a private
communication channel to the server. (3) The
interference mode: the server is allowed to directly
interfere with the interactions between clients. (4) The
normal mode: the interaction between clients is
mediated by the computer with reference to specified
privileges of modellers to access observables and
change the definitions.

We now proceed to a more detailed
consideration of a practical example of using
EM methods for the analysis of a problem and
construction of an ISM. This could be the basis
of establishing part of a requirement for a
system, for the reengineering of existing
processes in a business, and for the
development of an associated useful system.

5. EM FOR A WAREHOUSE SYSTEM:
A CASE STUDY

EM offers an open-ended environment that
provides an alternative approach both to
business modelling and to system development.
It also promotes the participation of users
(stakeholders) in the business modelling
activity. Since the stakeholders share a
common interest in the success of the business,
it is important that our framework supports
sharing and distribution of information and
knowledge, as well as the learning and
experimentation that contribute to the
continuous evolution in its organisation.

A warehouse management system is taken
as a case study to illustrate the potential for
applying the SPORE framework in BPR. This
case study was adopted by Jacobson et al. in
their text Object-Oriented Software
Engineering (1992). At that time, their main
concern was to identify the requirements of
proposed computer systems by use case
analysis and modelling. The idea behind the
use case approach is that if we understand the
roles of the users who need access to the
system, then we shall identify some of the
essentials from which requirements are elicited.
For Jacobson, each use case is associated with
a particular kind of interaction between human
agents (actors) and the system, such as might
be directed towards one of the required
functions of the warehouse (e.g. manual
redistribution between warehouses). In a

透過經驗模式達成企業流程再造 17

subsequent book, The Object Advantage,
Jacobson et al. (1995) extend the use case
approach to modelling business processes by
introducing the concept of a ‘business use case’,
and propose a method for object-oriented
business engineering. There the use case model
serves as a process model of the existing
business (the outside view of the company),
which is used as the basis for prioritising the
processes to be reengineered.

In this paper, we also regard it as
important to address BPR in the broader
context of developing a business process model.
This means widening our focus to include the
‘real world’ (the environment and human fac-
tors) rather than the computer system alone.
When we adopt this perspective, the role of
EM is to develop a computer-based model that
can be used to explore all the characteristic
transactions of the warehouse. To this end, the
character of our framework is
through-and-through agent-oriented, so that the
warehouse activity is conceived with reference
to state-changing protocols for human and
automated components with the system. In as
much as human actions are constrained by the
business process and follow some reliable
patterns, it is possible to regard their
co-operative activity as a form of computation
(in the same way that we might say “the users
are programmed”). The human users and
computer-based components can then be
viewed as computational agents in a complex
system. This agency is mediated through the
user-computer interface: the input of the user
influences the state of the computer, and the
output of the computer changes the
environment of the user (Beynon and Russ,
1994).

5.1 Introduction to the Warehouse Example

This case study involves applying the SPORE
framework to a warehouse management system

to achieve BPR. Our goal is to illustrate the use
of the EM concepts discussed earlier, but it is
not possible to give a complete overview or
fully illustrate the entire study.

The proposed system is to support
warehouse management. The main function of
a warehouse is to provide its customers with
warehouse space. The operations of the
warehouse also include storing different kinds
of items and using trucks to redistribute the
items. The aim of introducing computer
systems into the warehouse is to offer
automatic support to the storage and
redistribution services. This involves keeping
track of the locations and status of items,
differentiating between kinds of items (those
that are perishable or flammable), maintaining
security and integrity checks, and managing
storage, retrieval and relocation. (The
possibility that some of the functions of the
warehouse associated with the physical storage
and retrieval of items might also be automated
using robots is not beyond the scope of our
approach, but this is not directly addressed
here.) The people in the warehouse who will

Use Case

Warehouse
Management System

Truck
Driver

Foreman

Office Personnel

Warehouse
Worker

Forklift
Operator

Use Case

Figure 4. Diagram of the Initial
Warehouse System with Actors

Identified (source: amended from
Jacobson et al., 1992)

資管評論 第十三期 民國九十三年十二月 18

use this system may include: the foreman
responsible for the warehouse; the warehouse
worker who is responsible for loading and
unloading; the forklift operator who drives a
forklift in the warehouse; the truck driver who
drives a truck between different warehouses;
the office personnel who receive orders and
requests from customers, arrange the truck
routine, and keep records of all warehouses.

5.2 Business Process Model for Warehouse

In applying the traditional use case approach,
the first step is to create a simple picture of a
system that describes the system boundaries
and the actors (users) of the system (cf. Figure
4). The EM approach differs in a significant
respect – the boundary of the system is not
preconceived but grows with the understanding
of the modeller. In conventional system
development, because the boundary is defined
in advance, the modeller focuses on those
interactions that respect the functionality that is
imposed on the system. In an EM approach, the
warehouse operation is conceived in terms of
each agent’s perception of states and state
changes. For this reason, our initial concern in
developing the business process model is with
studying the capabilities of the agents that are
intended to operate, and examining the
possibilities for their unconstrained interaction
in an experimental manner. This is the basis for
subsequently exploring the protocols these
agents can realistically follow in order to carry
out the preconceived characteristic transactions
of the warehouse.

In traditional modelling approaches for
business, the issue of how agents apprehend the
current state of a business process is not
explicitly addressed. Of course, there are some
key observables that are recognised from the
outset to be strongly related both to the daily
work of personnel within the warehouse and to
the phases in preconceived transactions. For

instance, in the warehouse case study, these
include the items stored in the warehouse and
their locations. The EM approach pays much
more serious attention to the true character of
real-world observation. As a result, the role of
observables in the business process differs in
three important respects. Firstly, the precise
way in which states and events are observed by
an agent is considered to be crucially important.
It is not simply the fact that an item is at a
location, or that a truck has arrived at the
warehouse that is deemed significant; it also
matters how and by whom the presence of an
item or the arrival of a truck is or can be
observed. Secondly, the fact that agents are
aware of the abstract stage that has been
reached in the business process is taken into
account in identifying their observables. For
instance, the office personnel will distinguish
the abstract status of a redistribution process
according to whether a group of items is still at
the warehouse, in transit or has now been
successfully relocated. Thirdly, there has to be
a means by which agents interpret physical
observation of real world state as disclosing the
status of abstract business transactions. For
instance, there must be some concrete
indication that is now timely to register that an
item has now officially left the warehouse, and
that a new phase in the redistribution process
has begun.

Our EM business model is framed with
reference to the state change of an abstract
nature that is associated with observation of a
process. For this purpose, the relevant
observables relate to the current status in
communicating information about
characteristic warehouse operations between
warehouse personnel. The corresponding state
changes are concerned with the systematic
execution of protocols and the associated
transition from one phase to the next. By using
such state changes as a representation for

透過經驗模式達成企業流程再造 19

business processes, we will easily identify the
existing processes, and (from potential
problems or dissatisfaction from customers or
employees) can also find those that are
candidates for BPR activity. An important
aspect of the observables in our business model
is that they should not only serve to determine
the current state, but must also supply a
transaction history appropriate for auditing.

In order to understand the existing
business processes properly, the ISM we
develop to represent the business process
model is modelled on the practices that would
have been used in the operation of the
warehouse prior to the introduction of com-
puters. (This is consistent with Jacobson’s
emphasis on the benefits of modelling existing
practice (Jacobson et al., 1995).) In this context,
forms and paper delivery serve as records of
the operation of the model. This kind of
manual data entry following systematic
processes of form delivery can represent both
the current status of all transactions (such as
which items were in transit) and the history of
transactions. The objective of BPR is to
automate these transactions by introducing
computer systems, and to try to find
alternatives that will, for example, reduce the
work-hours of personnel and achieve a more
efficient process for business.

From our perspective, the forms can be
interpreted as a paper-based ISM for the
business process. In carrying out a particular
transaction, specified procedures are to be
followed in filling forms and transferring them
between personnel. For instance, as depicted in
Figure 5, when a manual redistribution
between warehouses is initiated, four copies of
redistribution forms (RFs) are transferred from
the foreman to the warehouse worker. The
manual activities of processing forms
effectively identify which agents have roles in
the transaction, which are currently active in

any phase, and how their interaction is
synchronised (cf. Figures 5 and 6). The current
status of any transaction is determined by what
sections of forms are currently completed and
who currently holds the forms.

The modifications that agents make to
forms, and the movement of the forms
themselves, can be construed as tracing a path
through the business process. To elaborate this
in more detail we must refer to the
observational and interactional context for each
agent: the observables it can refer to (its
oracles), those it can conditionally change (its
handles) and the protocol that connects these.
Note that the relevant observables in this
context may refer to the state of the warehouse
itself (e.g. an item can be signed off only if it is
presently to hand), and relate to the high-level
context for interpretation (e.g. issues of legality,
safety etc.). The persistence of the record that
the forms supply is also significant for auditing
and traceability.

Our account of the observational and
interactional context makes use of the
agent-oriented modelling notation LSD, as
illustrated in Listing 1. In this account, the
interpretation of agent actions may vary
according to the current status of the business
process being investigated, and the modeller’s
current understanding of it. For instance,
Beynon (1997) and Ness (1997) identify three
views of agents, each appropriate to a different
context. In the early stages of familiarisation
with an environment or putative system, an
agent has unexplored potential to affect
system2 state (view 1). At a later stage, an
agent may be construed as reliably following
some particular patterns of stimulus-response
within the system (view 2). When an

2 The ‘system’ is our warehouse case study is regarded
as the whole organisation, not only the computer
system itself.

資管評論 第十三期 民國九十三年十二月 20

appropriate business process has been
successfully identified and implemented, each
agent enacts a pattern of stimulus-response
interaction that can be entirely circumscribed
and predicted (view 3). In view 1 our concern
is whether an entity has any influence over its
environment and in view 3 our concern is
whether the exact nature of the influence is
known. The term ‘agent-oriented’ is commonly
used to refer to activities that are being
interpreted from the view 3 perspective
(Shoham, 1993), but EM promotes the idea that
the concept of agency is only meaningful in
relation to the development of understanding
from view 1 to view 3 perspectives.

In our warehouse case study, there are
contexts in which all the human agents can be
viewed in each of these various ways. Whilst
the modeller is initially unfamiliar with the
environment and the processes of the business,
the personnel will represent examples of view
1 agents whose interaction with the warehouse
environment and the operation of its business is
as yet unexplored. When the roles of a
particular employee, such as foreman, have
been more clearly identified, they can be
regarded as view 2 agents whose pattern of
stimulus-response can be in some respects
clearly identified. The aim of our modelling
process is to fully understand the whole
business process and attribute automatic
agency to view 3 agents whose pattern of
stimulus-response is entirely predictable. This
accords with our thesis that the business model
is a form of generalized program, and that
business process reengineering closely
resembles program requirements capture.

The LSD account can be viewed as
identifying and classifying the observables that
capture the modeller’s current understanding of
the warehouse operation. If experimental
interaction with the model in due course
justifies the transition from a view 1 to a view

3 perspective, the LSD account can be regarded
as specifying the observables that describe the
stimulus-response patterns in the organisation.
In an LSD account, observables that are
attached to an agent are referred to as states. In
general, these observables can be directly
manipulated by another agent. For example, the
agent warehouseWorker can change the
status of an item to ‘moving pending’ by
manipulating the rf_moving_pending
observable which is a state for the agent rf.
The oracles are the observables to which an
agent responds. For example, rf_item and
rf_quantity in the agent warehouse-
Worker are examples of oracles for the
warehouse worker, who has to know the
identity and quantity of items to be
redistributed before changing their status (cf.
Figure 6 and Listing 1). The handles for an
agent are those observables that are
conditionally under its control. The observable
rf_moving_pending is an example of a
handle for the agent warehouseWorker.

The stimulus-response patterns for an
LSD agent are modelled in two ways. The
derivates are used to represent
stimulus-response relationships that are
indivisibly coupled. For example the
observable transportationError, which
indicates whether there is truck available for
the specific time at which the foreman intends
to make redistribution, is a state for the agent
environment but also a derivate for the
agent foreman. That is to say, any change in
the status of truck availability will be deemed
to simultaneously change this observable.
Looser coupling of stimulus and response is
modelled in protocols, which consist of a set of
guarded actions, each of which takes the form
of an enabling condition and an associated
sequence of redefinitions of observables. Each
guarded action can be regarded as a privilege to
act. That is, if an enabling condition pertains, a

透過經驗模式達成企業流程再造 21

particular action may be performed. As an
example of this principle, the agent
warehouseWorker receives redistribution
forms from the foreman (the enabling
condition), then decides the loading time and
platform, and passes the forms to both the
office and forklift operator (the guarded
action).

5.3 The ISMs for the Warehouse State

In interpreting the business process model, and
ensuring that its abstract phases are or can be
appropriately embodied in agent perception
and action, it is essential to take account of the
physically explicit observables associated with
the warehouse. In keeping with the situated
nature of SPORE framework, the ISM is used
to incorporate the matter-of-fact observations
of the current state of the warehouse. As
mentioned earlier, typical observables that are
significant in this view are the items and
locations in the warehouse, and the inventory
that connects items with locations. An ISM to
represent these observables will supply visual
representations for items and locations, and
display the status of the inventory. Such a
representation of the current warehouse state is
complemented by informal actions, such as
represent the relocation of items, item look-up
in the inventory or receipt of a new item for
storage. In some contexts, this will motivate
visualisations to represent intermediate states
in the operation of the warehouse, associated
with items in transit, or items located via the
inventory but yet to be retrieved from the
warehouse.

A model of the warehouse has to
incorporate such aspects of state and state
change in order to be faithful to its referent. It
must also provide the setting in which to
consider behaviours that are undesirable or
outside the scope of normal operation.
Relevant observables required for this purpose

might address issues such as the loss of items
or warehouse locations, the concept of items
being mislaid, or of items being perishable.

There is no single ISM that can represent
all the aspects of the warehouse state. The state
of the warehouse will typically be represented
by different ISMs according to what problems
are being addressed in the SPORE framework.
The scale of an ISM is limited by the number
of definitions that can be conveniently stored,
rapidly accessed and efficiently processed, but
in these respects it is well-suited to those
concerns that lie within the modeller’s
conceptual grasp. The ISM we construct here
incorporates the ‘seed’ ISMs for the warehouse:
the form-based abstractions that capture the
state of the business process model and the
activities of the agents; the storage, retrieval
and distribution of items; and additional
observations such as are associated with the
wider significance of the warehouse operation
(e.g. concerned with the legality and the integ-
rity of the business process). The potential
framework for BPR established by applying
SPORE is illustrated by the transformation
from a paper-based to a computer-based ISM.

The distributed version of EDEN enables
us to separate the viewpoints of the agents in
the model, and to complement these with an
external observer’s interpretation. Figure 6
illustrates how computer-based forms are used
to represent the environment for each agent’s
interaction. In this way, the distributed ISM
can serve as a medium in which to identify and
enact appropriate transactions, and to debug
and refine these through collaborative
interaction between the various participants.
Many possible issues in requirements can be
addressed by SPORE in this way:

8 Through experimentation at different
workstations, we can identify issues that
are problematic from the perspective of

資管評論 第十三期 民國九十三年十二月 22

particular agents: for instance, “how does
the office know which drivers are
available?”, “how does the office
determine whether a transaction is
completed?”.

9 Through the elaboration of different seed
ISMs, we can address additional issues,
such as transportation costs, perishable
goods, security and trust concerns.

10 Through modifying dependencies and
communication strategies, we can
consider the effects of different tech-
nologies, such as are associated with the
use of mobile communications, the
Internet, optical bar code readers, or
electronic locking agents.

11 Through collaboration and synthesis of
views, we can distinguish between
subjective and objective perceptions of
state e.g. to contrast “I remember doing
X” with “I have some record of doing X”
with “There is an official record of X”, or
to model misconceptions on the part of an
agent.

12 Through intervention in the role of
superagent, it is possible to examine the
consequences of singular conditions that
arise from opportunistic interaction or
Acts-of-God, and to assess activities
outside the scope of normal operation
such as are associated with fraud, or
manual back-up to automated procedures.

6. CONCLUSIONS
We have introduced a novel approach to
modelling that is based on a view of
computation and programming that is
significantly broader than conventional views.
On this view (EM), based as it is on the
concepts of observable, dependency and
agency, computer-based models of business
processes can be built in a way similar to that

in which humans make conceptual models of
such processes. We can then specialise and
circumscribe our models to derive traditional
software systems. In this way EM can offer
both cognitive and operational support to BPR
from the very early, conceptual stages of
modelling. The potential benefits of
introducing the SPORE framework for
reengineering a business process are its
flexibility, openness and the richness of
interaction possible between many human
participants in the modelling environment. Our
case study shows the potential for modelling
current practice in a business. There is clearly
much future work to be done on exploring the
scalability of our approach and the derivation
of practical systems from our models.

REFERENCES
1. Beynon, W. M. (1997). “Empirical

Modelling for Educational Technology,”
in Proceedings of the Second
International Conference on Cognitive
Technology, August 1997, University of
Aizu, Japan, pp.54-68

2. Beynon, W. M., Chen, Y. C. et al. (2001).
“The Computer as Instrument,” in Lecture
Notes in Artificial Intelligence, Volume
1221, Springer-Verlag, pp. 476-489

3. Beynon, W. M., Rasmequan, S., Russ, S.
B. (2002). “A New Paradigm for
Computer-Based Decision Support,”
Decision Support Systems: The
International Journal, Vol. 33, Issue 2, pp.
127-142

4. Beynon, W. M., Rungrattanaubol, J.,
Sinclair, J. (2000). “Formal Specification
from an Observation-Oriented
Perspective,” Journal of Universal
Computer Science, Vol. 6, Issue 4, pp.
407-421

透過經驗模式達成企業流程再造 23

5. Beynon, W. M., Russ, S. B. (1994).
“Empirical Modelling of Requirements,”
Research Report 277, Department of
Computer Science, University of
Warwick

6. Chen, Y. C., Russ, S. B., Beynon, W. M.
(2000). “Participative Process
Modelling,” in Proceedings of the IEEE
International Conference on Systems,
Man and Cybernetics (SMC-2000),
Nashville, Tennessee, USA, October
2000, WP-1.6-5

7. Chen, Y. C. (2001). Empirical Modelling
for Participative Business Process
Reengineering, PhD Thesis, Department
of Computer Science, University of
Warwick, UK, December 2001

8. Davenport, T. H. (1993). Process
Innovation: Re-engineering Work through
Information Technology, Harvard
Business School Press

9. Davenport, T. H. (1996). “Why
Re-engineering Failed: The Fad that
Forgot People,” in Fast Company,
Premier Issue, pp.70-74

10. Ellis, T. I., Dooner, M., Swift, K. G.
(1997). “Better the Devil You Know – the
Role of Pragmatic Modelling,” in First
International Conference: Managing
Enterprises – Stakeholders, Engineering,
Logistics, and Achievement, July 1997,
Loughborough University, pp.151-156

11. Galliers, B. (1998). “Reflections on BPR,
IT and Organisational Change,” in
Galliers, R. D., Baets, W. R. J. (eds.)
Information Technology and
Organisational Transformation, John
Wiley and Sons Ltd, pp.225-243

12. Gerrits, H. (1994). “Business Modelling
based on Logistics to Support Business
Process Re-engineering,” in (Glasson et
al., 1994), pp.279-288

13. Glasson, B. C., Hawryszkiewycz, I. T.,
Underwood, B. A., Weber, R. A. (eds.)
(1994). Business Process Re-engineering:
Information Systems Opportunities and
Challenges, Elsevier Science

14. Hammer, M., Champy, J. (1993).
Reengineering the Corporation: A
Manifesto for Business Revolution,
Harper Business

15. Hutchison, A. (1994). “CSCW as
Opportunity for Business Process
Re-engineering,” in (Glasson et al., 1994),
pp.309-318

16. Jacobson, I., Christerson, M., Jonsson, P.,
Overgaard, G. (1992). Object-Oriented
Software Engineering: A Use Case
Driven Approach, Addison-Wesley

17. Jacobson, I., Ericsson, M., Jacobson, A.
(1995). The Object Advantage: Business
Process Reengineering with Object
Technology, Addison-Wesley

18. Jacobson, I., Griss, M., Jonsson, P. (1997).
Software Reuse – Architecture, Process
and Organisation for Business Success,
Addison-Wesley

19. Kaindl, H. (1999). “Difficulties in the
Transition from OO Analysis to Design,”
in IEEE Software, September/October
1999, pp.94-102

20. Ness, P. E. (1997). Creative Software
Development: An Empirical Modelling
Framework, PhD Thesis, Department of
Computer Science, University of
Warwick, United Kingdom, October 1997

21. Nurcan, S., Grosz, G., Souveyet, C.
(1998). “Describing Business Processes
with a Guided Use Case Approach,” in
Proceedings of the 10th International
Conference, June 1998, Pisa, Italy

22. Rasmequan, S., Roe, C., Russ, S. B.
(2000). “Strategic Decision Support
Systems: An Experience-Based

資管評論 第十三期 民國九十三年十二月 24

Approach,” in Proceedings of the 18th
IASTED Conference on Applied
Informatics, February 2000, Innsbruck,
Austria

23. Riemer, K. (1998). “A Process-Driven,
Event-Based Business Object Model,” in
Proceedings of Second International
Workshop in Enterprise Distributed
Object Computing, November 1998, La
Jolla, CA, pp.68-74

24. Schader, M., Korthaus, A. (1998).
“Modelling Business Processes as Part of
the BOOSTER Approach to Business
Object-Oriented System Development
Based on UML,” in Proceedings of the
Second International Enterprise
Distributed Object Computing Workshop,
November 1998, La Jolla, CA, pp.56-67

25. Sherwood-Smith, M. (1994). “People
Centred Process Re-engineering: An
Evaluation Perspective to Office System
Re-design”, in (Glasson et al., 1994),
pp.535-544

26. Shoham, Y. (1993). “Agent-Oriented
Programming,” in Artificial Intelligence,
Vol. 60, No. 1, pp.51-92

27. Simons, A. J. H. (1999). “Use Cases
Considered Harmful,” in Mitchell, R.,
Wills, A.C., Bosch, J., Meyer, B. (eds.)
Proceedings of the 29th Conference Tech.
Object-Oriented Programming Language
and Systems, pp.194-203

28. Simons, A. J. H., Graham, I. (1998). “37
Things that don't Work in Object
Modelling with UML,” in Kent, S.,
Mitchell, R. (eds.) British Computer
Society Object-Oriented Programming
Systems Newsletter, Vol. 35, 1998

29. Simons, A. J. H., Graham, I. (1999). “30
Things that Go Wrong in Object
Modelling with UML 1.3,” in Kilov, H.,
Rumpe, B., Simmonds, I. (eds.)

Behavioral Specifications of Businesses
and Systems, Kluwer Academic
Publishers, pp.221-242

30. Sun, P. H. (1999). Distributed Empirical
Modelling and its Application to Software
System Development, PhD Thesis,
Department of Computer Science,
University of Warwick, UK, July 1999

31. Sun, P. H., Chen, Y. C., Russ, S. B.,
Beynon, W. M (1999). “Cultivating
Requirements in a Situated Requirements
Engineering Process,” Research Report
357, Department of Computer Science,
University of Warwick, United Kingdom

32. van Meel, J. W., Bots, P. W. G., Sol, H. G.
(1994). “Towards a Research Framework
for Business Engineering,” in (Glasson et
al., 1994), pp.581-592

33. Vidgen, R., Rose, J., Wood, B.,
Wood-Harper, T. (1994). “Business
Process Reengineering: The Need for a
Methodology to Revision the
Organisation,” in (Glasson et al., 1994),
pp.603-612

34. Vogel, D. (1994). “Re-engineering
Towards the Meeting of the Future”, in
(Glasson et al., 1994), pp.35-45

35. Warboys, B., Kawalek, P., Robertson, I.,
Greenwood, M. (1999). Business
Information Systems: A Process
Approach, McGraw-Hill Publishing

透過經驗模式達成企業流程再造

25

Real World Environment

User in
Warehouse

Computer
Model

Process
(form delivery)User Actions

Foreman
Artefact

Warehouse
Worker
Artefact

Forklift
Operator
Artefact

Office
Artefact

Truck Driver
Artefact

Foreman
Artefact

Warehouse Worker
Artefact

Forklift Operator
Artefact

1. Fill RF1, 2, 3, 4, 5.
2. Pass RF1, 2, 3, 4 to

worker and keep RF5.
3. When receiving RF4,

update item quantity.

1. Mark items
2. Fill loading time,

loading platform
into RF1, 2, 3, 4.

Tick ‘On-Transport’ on
RF4 after loading.

Foreman

RF1,2,3,4

RF4

RF1,2,3

oracle

oracle

oracle

handle

handle

handle
Forklift Operator

Source Warehouse

RF4

Warehouse
Worker

visualisation

visualisation

visualisation

visualisation

visualisation
When receiving
RF2, update item
quantity.

Decide which place
for the received
items and fill in
RF2.

Destination Warehouse
Tick ‘Redistribution
Done’ in RF2 when
finishing unloading.

Forklift
Operator

Foreman

Warehouse
Worker

1. Check TF and decide
which driver for this
redistribution.

2. Fill driver name,
expected arrival time
and unloading platform
in RF1, 2, 3.

3. Keep RF1.
4. When receiving TTP1,

fill/update TF.

RF3 TTP1

Truck Driver RF2

Office
Personnel

oracle

handle

handle

oracle

1. When receiving
RF3 from office,
fill into TTP1, 2.

2. Keep TTP2.

RF2

RF2

Interactive Situation Models

Figure 5. A Collaborative Working Environment for Manual Redistribution
between Warehouses

資管評論 第十三期 民國九十三年十二月 26

Foreman
Artefact

oracle

handle

visualisation

Real World Environment Interactive Situation Models

User in Warehouse
Computer Model

Forklift Operator

Process
(form delivery)

Figure 6a (above). Detailed View of the
Forms used in the Warehouse Artefacts

oracle

handle

Warehouse
Worker
Artefact

Warehouse
Worker

Forklift
Operator

Office
Personnel

RF1,2,3
RF4

visualisation

Figure 6b (right). Detail of Panels
Representing Observables (handles or
oracles) for Some Warehouse Agents

RF1,2,3,4

RF4 Foreman

透過經驗模式達成企業流程再造 27

Table 1. A Comparison between Use-Case Approach and Empirical Modelling

Object-Orientation/Use Case Approach Empirical Modelling

The Focus of Modelling

The structure of control or the representation of
behaviour

The state or the potentially subjective interpretations
of the modeller

Programming Paradigm

Closed World Paradigm:
　 It offers a preconceived framework for

system development and once the models are
created, they are no longer in direct connection
with their referent.

Open Development Paradigm:
　 The focus of EM is on the open-ended

interaction between actors and the models and the
referent.

The Development Process

Modelling through Programming:
　 That is, programming the computer in order

to model the system.
　 The specification of the system is decided

before the construction of models.
Phase-based Model:
　 Consist of prescribed stages (i.e.

requirements, design, implementation and
testing).

Programming through Modelling:
　 That is, using modelling as a means to program

a computer.
　 The EM model can be viewed as a

specification of a program only after the majority
of the modelling process has been done.

Evolutionary Development:
　 No distinct sequential stages for model

construction and system identification.

Understanding of the Domain

The domain model serves as a logical view of the
proposed system:
　 The domain model is objective because it is

constructed to acquire the objective knowledge
about the system behaviour in order to achieve
a specified goal.
　 The computer model is characterised as a

tool.

The LSD account records the modeller’s conception
of the real world situation:
　 The LSD account is subjective as it represents

only the modeller’s perception of a particular
subject in a particular situation.
　 The computer model is characterised as an

instrument.3

3 That is, the instrument-like use of artefacts is more subjective because the emphasis of using instruments is on

exercising personal skills; and the tool-like use of artefacts is more objective because the use of tools is to perform a
specific function or goal in a organised and public pattern of interactions.

資管評論 第十三期 民國九十三年十二月 28

Object-Orientation/Use Case Approach Empirical Modelling

Main Advantages
The use cases provide some advantages in the process
of requirements elicitation.
Phase-based Advantages:
　 As each stage reflects a practice done by

prescribed and proven methods or techniques, this
enables the designers to develop the systems in a
systemic way.
　 The process is visible: The managers can measure

development progress through the regular
deliverables.

Easier to model the enabler of BPR:
　 Since both the OOSE and the Object Advantage

are based on the use-case technique, it is easier to
express the relationship between the proposed
business processes and the information systems to be
developed.

The reuse-oriented method has the obvious advantage
that it reduces the amount of system components to be
developed and so reduces cost and risks.

The design decisions do not need to be laid
down at an early stage:
　 The modeller can change the variables and

dependencies at any time to ensure the
system meets the requirements of its users.
　 The specification can be developed

incrementally. Customers do not have to
wait until the entire system is delivered until
they can gain value from it.

More robust than the OO model:
　 EM enables the user to experience an

unfamiliar situation, which includes
unexpected situations or even abnormal
conditions.
　 The interaction with the ISMs can make

the modeller’s insights and the shared
understanding with other participants visible
and communicable.

There is a lower risk of overall project failure.

Disadvantages
Design decisions have to be made at the early stages:
　 The following processes may not be started

without such activities having been done.
　 Commitments made at an early stage means it is

difficult to respond to changing customer
requirements.

Use case emphasise on prescribing system behaviours:
　 If any new inputs/outputs and additional features

of systems need to be added, the revision and
redesign of the whole process may cost time and
effort.

The mathematical models may not be suitable for
modelling states in business environment:
　 The subjective state the person perceives of the

real-world environment is not directly represented.
 It is hard to keep the requirements
specifications synchronous with changing
requirements.

Systems may often be poorly structured:
　 Continual change tends to corrupt the

system structure. Incorporating system
changes becomes increasingly difficult and
costly.

The process is not visible:
　 Managers need regular deliverables to

measure the development progress.
The issue of reuse cannot be coped with well
within EM, due to the rich dependencies in the
definitive scripts.

透過經驗模式達成企業流程再造 29

Listing 1. Part of the Outline LSD Specification for the Warehouse Management System

AGENT warehouseWorker(w) {
 STATE
 ORACLE
 rf_item[1...4],
 rf_quantity[1...4],
 rf_from_place[1...4],
 rf_date[1...4],
 rf_item[2],
 rf_quantity[2],
 rf_date[2]
 HANDLE
 rf_moving_pending[1...4],
 rf_loading_time[1...4],
 rf_loading_platform[1...4],
 rf_redistribution_confirm[1...4],
 rf_to_place[2],
 rf_redistribution_confirm[2]
 DERIVATE
 PROTOCOL
 *** Receiving RF1...4 from foreman ***
 --> read rf_item[1...4]; read rf_quantity[1...4];
 read rf_from_place[1...4]; read rf_date[1...4];
 write rf_moving_pending[1...4];
 --> write rf_loading_time[1...4];
 write rf_loading_platform[1...4];
 --> *** Pass RF1,2,3 to office and RF4 to forklift operator; ***
 // For loading
 *** Item not enough ***
 --> write rf_redistribution_confirm[1...4]
 ==('Error'&&'Item not enough');
 --> *** Pass RF1...4 back to foreman; ***
 *** Receiving RF2 from office ***
 --> read rf_item[2]; read rf_quantity[2]; read rf_date[2];
 --> write rf_to_place[2];
 --> Pass RF2 to forklift operator; ***
 // For unloading
 *** All places full ***
 --> write rf_redistribution_confirm[2]
 ==('Error'&&'All places full');
 --> *** Pass RF2 back to foreman; ***
}

資管評論 第十三期 民國九十三年十二月 30

AGENT rf(n=1...5) { // Redistribution Form
 STATE
 rf_warehouse[n]=@, // Information in RF1,2,3,4,5
 tf_foreman_name[n]=@, // Information in RF1,2,3,4,5
 rf_job_number[n]=@, // Information in RF1,2,3,4,5
 rf_item[n]=@, // Information in RF1,2,3,4,5
 rf_quantity[n]=@, // Information in RF1,2,3,4,5
 rf_from_place[n]=@, // Information in RF1,2,3,4,5
 rf_to_warehouse[n]=@, // Information in RF1,2,3,4,5
 rf_date[n]=@, // Information in RF1,2,3,4,5
 rf_moving_pending[n]=@, // Information in RF1,2,3,4
 rf_loading_time[n]=@, // Information in RF1,2,3,4
 rf_loading_platform[n]=@, // Information in RF1,2,3,4
 rf_driver[n]=@, // Information in RF1,2,3
 rf_arrival_time[n]=@, // Information in RF1,2,3
 rf_unloading_platform[n]=@, // Information in RF1,2,3
 rf_on_transport[n]=@, // Information in RF4
 rf_to_place[n]=@, // Information in RF2
 rf_redistribution_confirm[n]=@ // May appear in RF1,2,3,4
 ORACLE
 HANDLE
 DERIVATE
 PROTOCOL

}

透過經驗模式達成企業流程再造 31

About the Authors
Dr Yih-Chang Chen is
an Assistant Professor in
the Department of
Information Management
at Chang Jung University,
Taiwan. Dr Chen received
his BSc degree in
Computer and Information
Sciences from Tunghai
University, Taiwan in

1992; MSc (Econ) degree in Information
Systems Security from the London School of
Economics and Political Science (LSE),
University of London in 1996; and PhD degree
in Computer Science from the University of
Warwick, United Kingdom in 2002. His
current research interests include business
process reengineering, empirical modelling,
information systems, software engineering /
requirements engineering, and the use-case
approach to system development.

Dr Steve Russ has been a
Lecturer in Computer
Science at the University of
Warwick, United Kingdom
since 1987. His research
interests and teaching
began with work in logic
and formal specification
though in recent years he
has been much involved,

through publications and research students,
with the foundations and the applications of a
novel approach to computing known as
Empirical Modelling that has been developed
at Warwick University. He is now working on
broadening this technical approach into a
perspective (Human Computing) that includes
conventional computing but is also embedded
in related fields such as psychology, education,
philosophy and the history of science. His
research interests include the history of
mathematics and computing; he was President
of the British Society for the History of
Mathematics from 1994 to 1996. Currently he
is working on completing a major volume of
translations, The Mathematical Works of
Bernard Bolzano, for Oxford University Press.

資管評論 第十三期 民國九十三年十二月 32

