
MIS Review Vol. 18, No. 1, September (2012), pp. 71-91
© 2012 Department of Management Information Systems, College of Commerce

 National Chengchi University & Airiti Press Inc.

Key Management Scheme for Cumulative Member
Removal and Bursty Behavior in Secure Group

Communication Using m-ary Tree

R. Aparna1, B.B. Amberker2

1Deptartment of Computer Science and Engineering, Siddaganga Institute of Technology
2Department of Computer Science and Engineering, National Institute of Technology

ABSTRACT: Secure group communication is an important research area and numerous
applications are relied upon secure group communication model. Since the group
is dynamic in nature, rekeying must be carried out in an efficient manner. Member
leave event should be handled carefully compared to member join event. In some
applications like pay-per-view, periodical electronic information distribution etc.,
many users join and leave the group at the same moment known as bursty behavior.
In this paper, we propose schemes for handling cumulative member removal and
bursty behavior. We use m-ary key tree for managing the secure group and maintain
only m keys at each level of the key tree. We start with a scheme for cumulative
member removal and then we handle all the possible bursty behavior scenarios. We
analyze the communication and computation costs for worst cases. We compare the
costs of our scheme with the schemes proposed by Li et al. (2001) and binary key tree
scheme of Zou, Magliveras, and Ramamurthy (2002). We show that in our scheme
the number of new keys generated and encryptions performed are less compared to
Li et al. (2001) and Zou, Magliveras, and Ramamurthy (2002) schemes.

KEYWORDS: Secure Group Communication, m-ary Key Tree, Key Distribution Center,
Cumulative Member Removal, Bursty Behavior, Encryption Keys.

1. Introduction

With the widespread availability of powerful communication networks and explosive
growth of Internet technologies, group communication has become a topic of considerable
interest. Secure Group Communication (SGC) deals with exchange of information
securely among a set of users. Many solutions have been proposed for key management
in SGC. A naive approach is to have a common key shared between each pair of users in
a group of size N. This results in storing (N − 1) keys with each user and performs (N − 1)
encryptions to send a message. This scheme is proportional to N and does not scale well
for a secure group with large number of users. Therefore, a better approach for SGC is
to have a common secret key known as group key that is shared among members of the
group.

72 R. Aparna, B.B. Amberker

Group membership may change over time. New members may join the group and
existing members may leave the group. Whenever there is a membership change, it is
necessary to change the group key to provide continued privacy. The process of changing
the group key and communicating it to group members securely is known as rekeying.
When a new member joins the group, the group key must be changed to avoid the new
user from accessing past communication. This is known as backward access control.
When a member leaves the group, the group key must be changed to avoid leaving
member from accessing future communication. This is known as forward access control.
A scalable SGC model ensures that the rekeying operation is carried out with minimal
computation and communication costs.

Many applications like scientific discussion, teleconferencing, real-time information
services, pay-per-view, etc., are based on SGC model. In applications like pay-per-view,
periodical electronic information distribution, accessing online journals etc., many users
subscribe and/or unsubscribe for the service at the same time. For instance, in the pay-per-
view application, users subscribe at the start of a particular show and unsubscribe after
the telecast of the show (for example sports event). We can have scenarios like single
user join, single user leave, multiple users join, multiple users leave and sometimes a
single user may join and a single user may leave the group at the same time. Similarly
multiple users join and leave scenario may occur at approximately the same moment.
This scenario in which multiple users join and/or multiple users leave is termed as bursty
behavior. Whereas the scenario in which only multiple users leave, but no user joins is
termed as cumulative member leave or cumulative member removal. The above mentioned
applications exhibit bursty behavior and cumulative member leave. Hence, it is important
to develop an efficient key management scheme to address these issues.

Many key management schemes have been proposed to manage SGC (Blundo et al.,
1993; Burmester & Desmedt, 1995, 1997; Lee, Lui, & Yau, 2002; Lin, Lai, & Lee, 2005;
Perrig, 1999; Rafaeli & Hutchison, 2003; Sherman & McGrew, 2003; Wong, Gouda, &
Lam, 1998). In some schemes (Blundo et al., 1993; Fiat & Naor, 1993; Lin et al., 2005;
Mittra, 1997; Perrig, 1999; Rafaeli & Hutchison, 2003; Sherman & McGrew, 2003;
Wallner, Harder, & Agee, 1999; Wong et al., 1998) trusted Key Distribution Center (KDC)
may be involved which generates and distributes initial private pieces of information to
users in the group. Group key may be generated and distributed by the KDC itself or group
members may compute the group key either interactively or non-interactively. The other
category of schemes termed as Contributory Key Agreement schemes (Amir, Danilov, et
al., 2004; Amir, Kim, et al., 2004; Burmester & Desmedt, 1995, 1997; Diffie & Hellman,
1976; Lee et al., 2002; Perrig, 1999) do not involve KDC, instead, all the group members
contribute an equal share to compute the common secret key.

Key Management Scheme for Cumulative Member Removal and Bursty Behavior 73

But, all the above mentioned schemes concentrate on reducing the number of
encryptions and rekey messages when a single member joins or leaves the group.
However, in Caronni et al. (1998), Chang et al. (1999), authors try to address the problem
of multiple leave operations. In Li et al. (2001), joins and leaves are accumulated for a
fixed period of time and then handled all at once, thereby reducing the frequency of key
distribution. This is also considered as a case of bursty behavior. In Zou, Magliveras,
and Ramamurthy (2002), Zou, Magliveras, and Ramamurthy address bursty behavior by
extending the key management scheme proposed by Blundo et al. (1993). Here the storage
required by each user is and the time complexity for computing the group key
is O (t2n), where n denotes number of users in the group and t, the threshold value. In Zou,
Ramamurthy, and Magliveras (2002), bursty behavior is addressed by indexing users
and keys with a binary representation and using binary right shift operation. The time
complexity of this scheme is logarithmic in the group size.

The scheme proposed in Chang et al. (1999) focuses on the problem of cumulative
member removal and finds the minimum number of messages required to distribute new
keys to the remaining members of the group. The scheme uses a binary tree structure and
assigns only two keys at each level of the tree. It finds the keys required for encrypting the
changed keys by using Boolean function minimization technique. In Poornima, Aparna,
and Amberker (2007a, 2007b) the scheme proposed in Chang et al. (1999) has been
extended to m-ary tree and authors propose algorithms for single leave, two members
leave and multiple members leave events. It handles only simultaneous leave operations.

In this paper, we extend the scheme proposed in Poornima et al. (2007a, 2007b) to
address cumulative member removal and bursty behavior in SGC. To address cumulative
member removal, we find encryption keys required to convey new group key to the
remaining members of the group. We compare our scheme with Chang et al. (1999)
scheme and show that we reduce the storage at KDC by a factor of 4% to 12%, at users
by 30% to 38% and encryption cost is reduced by 55%. For bursty behavior scenario,
we compute the number of keys generated, encryptions performed and rekey messages
constructed for the worst case scenario. We address equal number of join and leave events,
number of joins greater than number of leaves and number of joins less than number of
leaves separately. We compare our results with the batch rekeying scheme proposed in Li
et al. (2001) and show that the number of new keys generated and encryptions performed
are either less than or equal to the values obtained in Li et al. (2001).

Rest of the paper is organized as follows: We discuss in brief the related work in
Section 2, we begin with discussing the scheme for handling cumulative member removal
in Section 3. In Section 4 we analyze bursty behavior with equal number of joins and
leaves, number of joins more than number of leaves, number of joins less than number of

74 R. Aparna, B.B. Amberker

leaves scenarios. Section 5 highlights Implications for Practices and Section 6 concludes
the paper.

2. Related work

The key management scheme for managing secure group communication proposed
by Wong et al. (1998), Wong and Lam (2000) is one of the efficient method which
employs a logical key tree structure. This scheme is also termed as Key Tree scheme. A
key tree is a directed acyclic graph with two types of nodes, namely U-nodes representing
group members and K-nodes representing keys. In this scheme KDC maintains a key tree
with degree d, where each node in the tree corresponds to either member’s private key, or
group key or an auxiliary key. Users are at the leaf level of the tree and the key nodes at
leaf level correspond to private keys of the users. The key at the root node of the tree is
the group key. Keys at the internal nodes of the tree are the auxiliary keys. A member u of
U is given a key k if and only if there is a directed path from U-node u to K-node k along
the path from U-node to root. It addresses the problem of minimizing the number of rekey
messages during single join or leave event. This scheme achieves scalable rekeying, which
requires 2logdN rekeying overhead for user join event and (d − 1) logdN for user leave
event, where N is the group size. The scheme proposed in Waldvogel et al. (1999) reduces
the overhead during user join event by allowing the users to calculate new key on their
own using one-way function. The scheme proposed by Sherman and McGrew (2003) uses
a one-way function tree in which keys are generated using one-way functions. In both the
schemes rekeying overhead is reduced to log2N instead of 2log2N.

In Li et al. (2001), Li et al. accumulate joins and leaves for a fixed period of time
and then handle them in a batch termed as batch rekeying, thereby reducing the frequency
of key distribution. A marking algorithm has been devised to process a batch of join and
leave requests and the scheme is analyzed for worst case scenarios.

Zou, Magliveras, and Ramamurthy (2002) address bursty behavior using a
symmetric polynomial in N indeterminates with coefficients in Zp, where p is a prime and
p ≥ N. It extends the scheme proposed by Blundo et al. (1993) and provides provision for
accommodating users in the range N to 2N.

Bursty behavior is addressed in Zou, Ramamurthy, and Magliveras (2002) by using
a key tree structure as in Wong et al. (1998). Here, a node at level l in the key tree is
assigned with bitstring of length l, 1 ≤ l ≤ log2N. Each user ui, i = 1, 2, …, N in the group
is also assigned with an identification number i. To handle bursty behavior, it first finds
the common keys shared among the leaving members by performing right shift operation
on the bitstrings. It changes the common keys only once thereby reducing the computation

Key Management Scheme for Cumulative Member Removal and Bursty Behavior 75

and communication costs. The amount of storage required at each user and KDC in this
scheme is same as that of Wong et al. scheme (Wong et al., 1998).

The scheme in Chang et al. (1999) is proposed to handle multiple user leave event
in large groups. The scheme uses a binary key tree to manage SGC. At every level i of
the binary key tree a key pair (ki, k’i) is maintained, i = 1, 2, ..., [log2N]. Here, ki and k’i

are not complement to each other, but are two different values. This scheme uses Boolean
Function Minimization technique to compute minimum number of encryption keys to
securely distribute the changed keys to the remaining users in the group. In Poornima et
al. (2007a, 2007b) m-ary tree is used to manage SGC. Here, m keys are used at each level
of the tree. It addresses single member leave, two members leave and multiple members
leave events, thus handling only simultaneous leave operations.

The scheme in Zou, Ramamurthy, and Magliveras (2002) addresses only bursty
behavior, but not cumulative member removal, whereas the scheme in Chang et al.
(1999) addresses only cumulative member removal, but not bursty behavior. The scheme
proposed in Poornima et al. (2007a, 2007b) also addresses only cumulative member leave
event. In this paper, we are extending the scheme proposed in Poornima et al. (2007a,
2007b) to address both cumulative member removal and bursty behavior efficiently.
To the best of our knowledge we found no paper in the literature which addresses both
cumulative member removal and bursty behavior. In this paper we are addressing both
cumulative member removal and bursty behavior by considering all the possible worst
case scenarios in an efficient way.

3. Cumulative member removal

Chang et al. scheme proposed in Chang et al. (1999) uses a binary key tree and two
keys are maintained at each level of the tree. Here, we extend the scheme to m-ary key
tree as in Poornima et al. (2007a, 2007b) and maintain m keys at each level of the key tree.
For a key tree with degree m, the height h of the tree is logmN. We use the following model
in the paper.

3.1 Model

We consider a group with N users u1, u2, ..., uN. The tree is constructed with the
following features:

(1) There are h = logmN levels in the tree and are numbered from 0 to h. The root is at
level 0.

(2) Each node at level l can have atmost m children nodes, l = 0, 1, ..., h − 1.

76 R. Aparna, B.B. Amberker

(3) The children of a node are numbered from 0 to m − 1 from left child to right child. We
refer these numbers as positions of the children nodes.

(4) Leaf nodes that are rooted at level l form one subgroup, l = 0, 1, ..., h. Subgroups at
level l are numbered from 0 to ml − 1.

(5) The key at level 0 is the group key GK.

(6) At each level l of the tree, m keys are assigned and are labeled as to , l = 1, 2,
..., h.

(7) All the m keys at level l are assigned with unique Key Identification number, KID.

(8) All the nodes at position i of level l are assigned with the common key , l = 1, 2, ...,
h.

(9) Nodes at level 1 which are numbered as 0 to m − 1 are assigned the corresponding
binary value as UIDs. The length of each UID is [log2m] bits.

(10) Each node k at level l is assigned with UID BX, where X is the binary value of k and B
is the UID of its parent, l = 2, 3, ..., h.

KDC generates and sends a private key Ki, i = 1, 2, ..., N to each user ui. We assume
that KDC establishes a secure channel with each user ui to communicate the private key
Ki, i = 1, 2, ..., N. To each user ui, KDC sends the keys and their KIDs along the path from
leaf to root by encrypting with the private key of ui.

3.2 Notations

(1) GK denotes Group Key.

(2) {GK}K0
denotes GK is encrypted with the key K0.

(3) denotes concatenation operation.

(4) denotes set union operation.

3.3 Advantages of using m-ary tree

For a group with N users, if binary tree is used, it results in a tree of height log2N.
Each user in the group is required to store log2N keys and the KDC is required to store 2N
− 1 keys in the scheme proposed by Wong et al. (1998). In Chang et al. (1999), the storage
at the KDC is reduced by using only 2 keys at each level, thus reducing the storage to
2log2N. However the storage at each user remains as log2N. In our scheme, instead of
binary tree, m-ary tree (m > 2) is used which reduces the height of the tree to logmN and
hence, each user is required to store logmN + 1 keys and KDC is required to store mlogmN
+ 1 keys.

Key Management Scheme for Cumulative Member Removal and Bursty Behavior 77

3.4 Optimal value for m

For a group with N users, if h is the height of the binary tree, it results in storing 2h
keys at the KDC in the scheme proposed by Chang et al. in Chang et al. (1999). For the
same value of N, if h’ is the height of the m-ary tree, then mh’ keys are stored at the KDC.
The height h of the m-ary tree is

h’ = h/log2m

Number of keys at the KDC in terms of h is expressed as m(h/log2m), which illustrates that
as m increases, the storage at the KDC increases. Hence, in order to reduce the number
of keys both at the KDC and users as compared to the scheme in Chang et al. (1999),
following relation must be satisfied:

m(h/log2m) < 2h

which is true only if m = 3 and m = 4. If m = 4 it maintains the same storage at KDC as
in Chang et al. (1999) scheme and reduces the storage at the users. However if m = 3, it
reduces the storage both at the KDC and users as compared to Chang et al. (1999) scheme.
We achieve storage savings of 4% to 12% at KDC and about 30% to 38% at the users if
we use m = 3.

3.5 Scheme for handling cumulative member removal

Any number of users can leave the secure group from any position in the m-ary
tree. Algorithm 1 handles the computation of encryption keys for cumulative removal of
arbitrary members. We use the following notations in the algorithm.

(1) L: Number of leaving users

(2) P: Array with L elements containing UIDs of leaving users

(3) KEK: Set containing the keys used to encrypt the new group key

(4) S: Set of users in the group excluding leaving members

Algorithm 1 considers L leaving users and finds a set of encryption keys to convey
new group key to the remaining members in the group. If there is no leave in a subgroup
rooted at level l, it is termed as non-leaving subgroup, l = 0, 1, ..., h − 1. In Step 1 of the
algorithm, KDC finds non-leaving subgroups in the tree and appends the keys of the
non-leaving subgroups to the set KEK. KDC starts from level 1, if there is a non-leaving
subgroup j at level 1, the key is added to the KEK and the users in subgroup j are
eliminated from set S. This may result in eliminating the users belonging to the subgroups
at subsequent levels of the tree. This procedure is repeated for all the levels from 2 to h −
1 in the tree for the remaining subgroups. When we move to Step 2, we are left with the

78 R. Aparna, B.B. Amberker

users who do not belong to any non-leaving subgroup. We have to find encryption key
individually for each remaining user in set S. We compare the keys held by each user with
the keys of all leaving members and consider the combination of keys as follows:

(1) In ith iteration of the loop, we compare i keys of ui from level h to h − i, i = 2, 3, ..., h
− 1 with the respective i keys of leaving members. If no leaving member shares the
same set of keys, we do not proceed with the next iteration.

(2) We compute the Ex-OR of the set of keys obtained from previous step.

To convey the new group key GK’ securely to the remaining members of the group,
KDC performs the following operations:

Algorithm 1: Computation of Encryption Keys by KDC for Cumulative Member Leave.

Input: Set S of users in the group excluding leaving members. Array P containing UIDs
of leaving users.

Output: Set KEK of Encryption Keys.

1: Step 1: KEK ←

2: for l ← 1 to h do

3: for j ← 1 to L do

4: a ← l[log2m] MS bits P[j]

5: b ← [log2m] LS bits of a

6: H[j] ← b

7: end for

8: for i ← 0 to m − 1 do

9: f ← 0

10: for t ← 1 to L do

11: if (i = H[t]) then

12: f ← 1

13: end if

14: end for

15: if (f = 0) then

16: KEK ← { }

Key Management Scheme for Cumulative Member Removal and Bursty Behavior 79

17: S ← S - {Users who are descendants of nodes with key }

18: end if

19: end for

20: end for

21: Step 2: Finds combination of keys

22: for each user ui S do

23: k ← 0

24: for j ← 1 to h do

25: a ← j [log2m] LS bits of UID of ui

26: b ← [log2m] MS bits of a

27: k ← k

28: f ← 0

29: for i ← 1 to L do

30: if (a = j[log2m] bits of P[i]) then

31: f ← 1

32: break

33: end if

34: end for

35: if (f = 0) then

36: break

37: end if

38: end for

39: KEK ← KEK k

40: end for

41: Step 3: return KEK

(1) Computes CK = {GK’}K, K KEK

(2) Broadcasts (CK, KID of K), K KEK

80 R. Aparna, B.B. Amberker

Upon receiving the broadcast message, each remaining member of the group finds
the decryption key by comparing the KIDs of its keys with the KIDs of the received
messages.

It is required to change the auxiliary keys along the path where users have left. The
members of the group and KDC compute auxiliary keys on their own as follows:

(1) Each member performs exclusive-OR operation of the previous auxiliary key with the
new group key GK’.

(2) KDC performs exclusive-OR operation of the previous auxiliary key with the new
group key GK’.

Since all the users in the group are computing auxiliary keys on their, this reduces
the communication cost required to convey auxiliary keys to appropriate members of the
group. Hence, KDC only conveys the new group key to the members of the group and the
members will in turn compute the auxiliary keys on their own.

3.6 Storage required

We compare the amount of storage required in our scheme with the schemes
proposed by Wong et al. (1998) and Chang et al. (2004). Bursty behavior scheme
addressed by Zou, Ramamurthy, and Magliveras (2002) requires same amount of storage
as in Wong et al. scheme (Wong et al., 1998). Table 1 depicts the amount of storage
required at KDC and at each user in the group for the above mentioned three schemes. In
Table 2 we have considered some specific values for the group size, N, and theoretically
estimated the amount of storage required at KDC and each user.

For instance, for a group with N = 2,048 users, the height of the key tree in Chang et
al. (1999) scheme is h = [log22048] = 11. Each user in the group stores keys along the path
from leaf to root. Thus, the storage required at each user is h + 1 = 12. KDC has to store
all the keys in the key tree. In Chang et al. (1999) scheme, since only two keys are used
at each level of the key tree, KDC has to store 2h + 1 = 23 keys. For the same value of N,
for a key tree with degree 3, height of the tree is h = [log3N] = 7 and for degree 4 key tree,
h = [log4N] = 6. Hence, each user in degree 3 key tree stores 8 keys and in degree 4 key
tree stores 7 keys. In degree 3 key tree, 3 keys are used at each level of the key tree and
4 keys are used in key tree with degree 4. Thus, KDC stores 3h + 1 = 22 keys in degree
3 key tree. For 2,048 users key tree with degree 4 is not a complete tree. It contains only
two children at level 1 and hence only two keys are required at level 1. But, in subsequent
levels 4 keys are required which results in storing 2 + 4(h − 1) + 1 = 23 keys at the KDC.
We also have calculated the percentage savings in our scheme compared to Chang et al.
(1999) scheme. For instance, percentage savings for a key tree with degree 3 for N = 2,048

Key Management Scheme for Cumulative Member Removal and Bursty Behavior 81

users is 100 4. It is evident from the values in Table 2 that we are reducing the
amount of storage at the KDC by a factor of 4% to 12% and at the users by 30% to 38%.

3.7 Encryptions required

We compare the performance of our scheme with Li et al. scheme (Li et al., 2001).
Performance analysis of Zou, Magliveras, and Ramamurthy (2002) binary key tree scheme
(Zou, Ramamurthy, & Magliveras, 2002) is same as that of Li et al. (2001). Hence it
suffices if we compare the performance of our scheme with Li et al. scheme. We compare
the schemes with respect to number of encryptions required to convey new group key and
auxiliary keys to the remaining members of the group after the leave event. We encounter
worst case if the leaves are evenly distributed. In Li et al. (2001) and Zou, Ramamurthy,
and Magliveras (2002) schemes it results in worst case if there is a leave from each
subgroup rooted at level ([log2N] − 1) and in our scheme if there is a leave from different
positions of each subgroup rooted at level ([logmN] − 1). Thus, minimum number of leaves
that result in worst case in both the cases is N/m. For a key tree with degree m, maximum

Table 1 Comparison of Storage Required at KDC and Each User
Schemes

Wong et al. (1998) and
Zou, Ramamurthy, and

Magliveras (2002)

Chang et al. (1999) Our Scheme

Storage at KDC 2N − 1 2log2N + 1 min {3log3N + 1, 4log4N +
1}

Storage at each
user

log2N + 1 log2N + 1 min {log3N + 1, log4N + 1}

Table 2 Percentage Savings in Storage at KDC and Each User
Storage at N Chang et al.

(1999) Scheme
Our Scheme Percentage Savings

m = 3 m = 4 m = 3 m = 4
KDC 2,048 23 22 23 4 0
User 2,048 12 8 7 33 41
KDC 2,187 25 22 25 12 0
User 2,187 13 8 7 38 46
KDC 3,000 25 22 25 12 0
User 3,000 13 8 7 38 46
KDC 8,192 27 26 27 4 0
User 8,192 14 9 8 35 42

82 R. Aparna, B.B. Amberker

number of encryptions required to convey new group key and auxiliary keys in case of Li et

al. scheme is m(N-1)
m-1

. In our scheme it requires atmost N(m-1)
m

 encryptions. We compute

percentage savings in encryption cost in our scheme compared to Li et al. (2001) and Zou,

Ramamurthy, and Magliveras (2002) schemes as *

m(N-1)
m-1

N(m-1)
m

-

m(N-1)
m-1

 100. For m = 3, this is

approximately equal to 55. Thus, for a key tree with degree 3 we achieve a saving of
around 55% encryption cost as compared to Li et al. (2001) scheme.

Figure 1 shows an example key tree with N = 16 users, u0 through u15 and the
degree m of the tree is 4. The binary strings 0000 through 1111 are the UIDs of users u0
through u15 respectively. The keys K0 through K15 are private keys of users u0 through u15
respectively (which is not shown in the figure). Here, height h of the tree is [logmN] = 2.
Keys K1

1, K1
2, K1

3, and K1
4 are auxiliary keys at level 1 and keys K2

1, K2
2, K2

3, and K2
4 are

auxiliary keys at level 2 and GK is the group key. User u1 for instance, stores the keys K2
1 ,

K1
0 and GK which are along the path from its position till the root of the tree along with its

private key K1.

Suppose users u2, u3, u8 and u9 leave the group at the same time. Algorithm 1
considers all the leave requests and finds out encryption keys to convey new group key
to the remaining members of the group. From Algorithm 1, following keys are obtained
as encryption keys: since no user is leaving from the subgroups with auxiliary keys K1

1
and K1

3, same keys are used as encryption keys for the respective subgroups. From the
subgroup with K1

0 as the auxiliary key, users u2 and u3 are leaving. Hence, to convey new
group key, we cannot use K1

0. Next possibility is to look for the keys at the next lower
level i.e., K2

0 and K2
1. Since users u8 and u9 are also leaving, keys K1

0 and K1
1 cannot be

used as encryption keys. Thus, the encryption keys for u0 and u1 are computed as K2
0 K1

0
and K2

1 K1
0 respectively. Similarly, for users u10 and u11, K2

2 K1
2 and K2

3 K1
2 are the

respective encryption keys.

KDC broadcasts the following message:

,

Now, the auxiliary keys K1
0 and K1

2 must be changed by both KDC and respective
users. Following are the computations performed by the users to change these auxiliary
keys:

Users u0 and u1 compute K1
0′ = K1

0 GK′

Key Management Scheme for Cumulative Member Removal and Bursty Behavior 83

Users u10 and u11 compute K1
2′ = K1

2 GK′

KDC computes K1
0′ = K1

0 GK′ and K1
2′ = K1

2 GK′

4. Handling bursty behavior

In this section we consider bursty behavior and analyze our scheme with respect to
number of new keys generated, encryptions performed and rekey messages constructed.

4.1 Equal number of joins and leaves

We assume that initially there are N users, u1, u2, ..., uN in the group. If J users join
the group and L users leave the group at the same moment, where 0 ≤ J ≤ N and 0 ≤ L ≤ N,
then there might be a scenario in which J = L. In this section, we consider such a scenario
and analyze with respect to the number of new keys generated, number of encryptions
performed and number of rekey messages constructed.

For a group of N users, height of the key tree h = [logmN]. There are mi nodes at

Figure 1 Key Tree Structure Showing UIDs and Keys of Users in the Group,
Auxiliary Keys and Group Key

84 R. Aparna, B.B. Amberker

level i of the key tree, i = 1, 2, ..., h. It results in worst case if at least [N/m] users leave
the group that too each from different position of different subgroup at level h − 1. This
scenario requires changing all the keys in the key tree. Hence for analysis purpose, we
consider L = [N/m]. Even if more than [N/m] users leave the group, the values obtained
will be less than or equal to that of the values obtained in case of [N/m] leaves.

Suppose L users ul1, ul2, ..., ulL, (L ≤ N), send leave request and at the same time J
users uj1 , uj2, ..., ujJ , send join request. Since J = L, joining users occupy the positions of
leaving users. We first handle the leave event as in the case of cumulative member removal
and then handle join event. KDC computes encryption keys required to encrypt the new
group key to the remaining members of the group using Algorithm 1. Remaining users in
the group find respective decryption key to decrypt the new group key by comparing the
KIDs of the keys. After receiving the new group key, remaining members of the group
compute the auxiliary keys on their own by performing exclusive-OR operation of the
respective auxiliary keys with the new group key. For the new users, KDC encrypts the
new group key and auxiliary keys using the private keys of new users and conveys the
keys along with the KIDs.

4.1.1 Number of new keys generated

For a group of N users, height of the key tree h = [logmN]. Along with the group key,
there are m keys at each level of the tree. Total number of keys in the key tree = mh + 1.
Since for the worst case we have considered, all the keys must be changed, number of new
keys generated = mh + 1.

4.1.2 Number of encryptions

We are considering worst case scenario in which at least one user leaves from each
subgroup at level h − 1 and at least one user leaves from each position of the key tree. It
requires encrypting the new group key for each remaining user in the group individually.
For each new user, keys along the path from its joining point till the root are encrypted
with its private key. Since J = L = [N/m], there are N users in the group after handling join
and leave. Thus, total number of encryptions required is N.

4.1.3 Number of rekey messages

For no two users in the group, a common rekey message is constructed. There are N
users in the group after handling join and leave events. Thus, number of rekey messages
required is N.

4.2 More number of joins than leaves

Suppose L users ul1, ul2 , ..., ulL send leave request to leave the group and J users uj1,

Key Management Scheme for Cumulative Member Removal and Bursty Behavior 85

uj2, ..., ujJ send join request to join the group at the same moment and J > L. To analyze the
worst case, we are considering maximum value of L as [N/m] i.e., it results in worst case if
[N/m] users leave the group from different positions of different subgroups at level h − 1.
For J to be greater than L, minimum value for J = L + 1 = [N/m] + 1.

Among J joining users, first L users uj1, uj2, ..., ujL occupy the positions of
leaving members. We have to find either empty locations or allow the tree to grow for
accommodating remaining (J − L) users i.e., for users ujL+1, ujL+2, ..., ujJ. Let the number of
empty locations available in the key tree be E.

(1) If E ≥ (J − L), new users ujL+1, ujL+2, ..., ujJ. are inserted in the empty locations.

(2) Otherwise, if E > 0, first E users ujL+1, ujL+2, ..., uJL+E are inserted in the key tree. To
accommodate remaining J − L− E new users, m-ary tree with height h’ = logm(J − L −
E) is constructed.

 A. If h > h’

– the tree with height h is allowed to grow by one level in upward direction.

– the tree with height h’ is allowed to grow in upward direction till h’ becomes
equal to (h − 1).

– tree with height h’ = h − 1 is attached as a child to the tree with height h.

 B. If h < h’

– If the tree with height h’ is complete, it is allowed to grow by one level in upward
direction.

– the tree with height h is allowed to grow in upward direction till h becomes equal
to (h’ − 1).

– tree with height h = h’ − 1 is attached as a child to the tree with height h’.

KDC finds encryption keys using Algorithm 1, generates new group key GK’
and broadcasts encrypted GK’. Remaining users in the group find decryption key by
comparing the KIDs and decrypt the new group key GK’. Both KDC and remaining users
in the group change the auxiliary keys. For the new users, KDC encrypts the new group
key and auxiliary keys using the private keys of new users and communicates the keys
with their KIDs.

4.2.1 Number of new keys generated

For a group of N users, height of the key tree h = [logmN]. Along with the group key,
there are m keys at each level of the key tree. Total number of keys in the key tree = mh +
1. Since we have considered worst case leave event, it requires changing all the keys of the

86 R. Aparna, B.B. Amberker

key tree. Further, to handle J − L users join event, mlogm(J − L) new keys are generated.
Number of new keys generated = m(h + logm(J − L)) + 1.

4.2.2 Number of encryptions

We are considering worst case scenario in which at least one user leaves from each
subgroup at level h − 1 and at least one user leaves from each position of the key tree. It
requires encrypting the new group key for each remaining user in the group individually.
For each new user, keys along the path from its joining point till the root are encrypted
with its private key. There are N + J − L users in the group after handling join and leave.
Thus, total number of encryptions required is N + J − L.

4.2.3 Number of rekey messages

For no two users in the group, a common rekey message is constructed. There are
N + J − L users in the group after handling join and leave events. Thus, number of rekey
messages is N + J − L.

4.3 Number of joins less than number of leaves

Suppose L users ul1, ul2, ..., ulL send leave request to leave the group and J users
uj1, uj2, ..., ujJ send join request at the same moment and J < L. Since J is less than L,
sometimes the key tree may shrink in height. We encounter worst case scenario if L = [N/
m] and each user leaves from different position of different subgroup at level h −1. Since
we are considering the case for J < L, the value of J can range from 0 to L − 1. New J
users occupy the positions of first J leaving users.

KDC finds encryption keys using Algorithm 1, generates new group key GK’ and
broadcasts encrypted GK’ along with the KIDs of encryption keys. Remaining users in the
group find decryption key by comparing the KIDs and decrypt the new group key GK’.
Both KDC and remaining users in the group change the auxiliary keys. For the new users,
KDC encrypts the new group key and auxiliary keys using the private keys of new users
and sends the keys along with the KIDs.

4.3.1 Number of new keys generated

For a group of N users, height of the key tree h = [logmN]. Along with the group key,
there are m keys at each level of the key tree. Total number of keys in the key tree = mh +
1. Since we have considered worst case leave event, it requires changing all the keys in the
key tree. Since joining users occupy the positions of some of the leaving users, join event
does not require generation of new keys. Number of new keys generated = mh + 1.

4.3.2 Number of encryptions

We are considering worst case scenario in which at least one user leaves from each

Key Management Scheme for Cumulative Member Removal and Bursty Behavior 87

subgroup at level h − 1 and at least one user leaves from each position of the subgroup. It
requires encrypting the new group key for each remaining user in the group individually.
For each new user, keys along the path from its joining point till the root are encrypted
with its private key. There are N + J − L users in the group after handling join and leave.
Thus, total number of encryptions required is N + J − L.

4.3.3 Number of rekey messages

For no two users in the group, a common rekey message is constructed. There are
N + J − L users in the group after handling join and leave events. Thus, number of rekey
messages is N + J − L.

4.4 Performance comparison

We compare the performance of our scheme with the binary key tree schemes
proposed by Li et al. (2001) and Zou, Ramamurthy, and Magliveras (2002) with respect to
number of new keys generated, encryptions performed and rekey messages constructed.
Table 3 gives the comparison. It is observed that the number of new keys generated in the
schemes of Li et al. (2001) and Zou, Magliveras, and Ramamurthy (2002) is proportional
to N and in our scheme it is proportional to logarithmic in the group size. Number of
encryptions performed in Li et al. (2001) and Zou, Magliveras, and Ramamurthy (2002)
schemes is in terms of twice the group size, whereas in our scheme it is in terms of only
the group size. Thus, number of encryptions performed and new keys generated are less
as compared to the ones required in Li et al. (2001) scheme and Zou, Magliveras, and
Ramamurthy (2002) scheme. Reduction in number of key generation and encryptions
reduces the computation cost at the KDC. Thus, our scheme outperforms the scheme of
Zou, Ramamurthy, and Magliveras (2002) in both storage and computation costs.

5. Implications for practice

We find application of this SGC model in pay-per-view, periodical electronic
information distribution, on-line journal subscription and so on. In pay-per-view
application, users usually subscribe for specific events which are quite interesting for
them. Hence, the telecast should be made available only for the subscribed period.
Usually, many users subscribe for those events which are popular and this results in many
users joining and leaving the event at the same time.

In periodical electronic information distribution and on-line journal subscription,
many users subscribe for a particular duration, i.e., usually for one year or two years
period. It results in many users subscribing at the beginning of the year (usually during
the month of January) and un-subscribing at the end of the year. We may also encounter a

88 R. Aparna, B.B. Amberker

situation in which when many users unsubscribe, other users may subscribe for the event
resulting in bursty behavior.

In the above mentioned scenarios, if the events are considered as secure groups,
m-ary tree is constructed with subscribing users as members of the group and these users
can be provided with the keys along the path. Users can have access to the application
only if proper key is entered. Once new users subscribe and existing users unsubscribe,
new keys can be distributed efficiently using our scheme. Thus we find application of our
scheme in day-today scenarios.

6. Conclusion

We proposed a scheme which handles both cumulative member removal and bursty
behavior in a secure group. We used m-ary key tree with only m keys at each level of
the tree. We showed that in our cumulative member removal scheme the encryption cost
is reduced by about 55% compared to the scheme proposed by Li et al. (2001). If 4-ary
tree is used, storage required at KDC is same as the Chang et al. (1999) scheme, but at
the users it is reduced. If 3-ary tree is used, it reduces the storage at both KDC and users.
We showed that the savings in storage at KDC ranges from 4% to 12% and with users it
ranges from 30% to 38%.

Table 3 Number of New Keys, Encryptions, and Rekey Messages Required for
Different Cases

New Keys Encryptions Rekey messages
Li et al.

(2001) & Zou,
Magliveras,

and
Ramamurthy

(2002)
schemes

Our
Scheme

Li et al.
(2001) & Zou,
Magliveras,

and
Ramamurthy

(2002)
schemes

Our Scheme Li et al.
(2001)
& Zou,

Magliveras,
and

Ramamurthy
(2002)

schemes

Our
Scheme

J = L N + J − 1 mlogmN + 1 2(N − 1) N N N
J > L N + L − 2 m(logmN

+ logm(J −
L)) + 1

2N – 4 + 4(J
− L)

N + J – L N + J – L N + J – L

J < L N + J − 1 mlogmN + 1 2N + J – L −
2

N + J – L N + J – L N + J – L

Key Management Scheme for Cumulative Member Removal and Bursty Behavior 89

We considered different bursty behavior scenarios and analyzed the scheme for
worst cases. In each scenario we computed number of new keys generated, number of
encryptions performed and number of rekey messages constructed. We compared our
proposed scheme with the LKH (Logical Key Hierarchy) scheme and showed that our
scheme performs better in terms of cost of encryption and cost of key generation, thereby
reducing the computation cost overhead at the KDC.

References

Amir, Y., Danilov, C., Miskin-Amir, M., Schultz, J., & Stanton, J. (2004) ‘The spread toolkit:
architecture and performance’, Technical report, Johns Hopkins University, Baltimore, MD.

Amir, Y., Kim, Y., Nita-Rotaru, C., Schultz, J.L., Stanton, J., & Tsudik, G. (2004) ‘Secure group
communication using Robust contributory key agreement’, IEEE Transactions on Parallel
and Distributed Systems, Vol. 15, No. 5, pp. 468-480.

Blundo, C., De Santis, A., Herzberg, A., Kutten, S., Vaccaro, U., & Yung, M. (1993) ‘Perfectly
secure key distribution for dynamic conferences’, Lecture Notes in Computer Science, Vol.
740, pp. 471-486.

Burmester, M. & Desmedt, Y. (1995) ‘A secure and efficient conference key distribution
system’, Lecture Notes in Computer Science, Vol. 950, pp. 275-286.

Burmester, M. & Desmedt, Y. (1997) ‘Efficient and secure conference-key distribution’, Lecture
Notes in Computer Science, Vol. 1189, pp. 119-129.

Caronni, G., Waldvogel, K., Sun, D., & Platter, B. (1998) ‘Efficient security for large and
dynamic multicast groups’, Proceedings of the Seventh IEEE International Workshop on
Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’98), Palo
Alto, CA, June 17-19, pp. 376-383.

Chang, I., Engel, R., Kandlur, D., Pendarakis, D., & Saha, D. (1999) ‘Key management for
secure Internet multicast using Boolean function minimization technique’, Proceedings
of the Eighteenth Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM’99), New York, March 21-25, pp. 689-698.

Diffie, W. & Hellman, M. (1976) ‘New directions in cryptography’, IEEE Transactions on
Information Theory, Vol. 22, No. 6, pp. 644-654.

Fiat, A. & Naor, M. (1993) ‘Broadcast encryption’, Proceedings of the Third Annual
International Cryptology Conference (CRYPTO’93), Santa Barbara, CA, August 22-26, pp.
480-491.

90 R. Aparna, B.B. Amberker

Lee, P.P.C., Lui, J.C.S., & Yau, D.K.Y. (2002) ‘Distributed collaborative key agreement
protocols for dynamic peer groups’, Proceedings of the Tenth IEEE International
Conference on Network Protocols (ICNP’02), Hong Kong, China, November 12-15.

Li, X.S., Yang, Y.R., Gouda, M.G., & Lam, S.S. (2001) ‘Batch rekeying for secure group
communications’, Proceedings of the Tenth International World Wide Web Conference
(WWW’01), Hong Kong, China, May 1-5, pp. 525-534.

Lin, J.C., Lai, F., & Lee, H.C. (2005) ‘Efficient group key management protocol with one-
way key derivation’, Proceedings of the IEEE Conference on Local Computer Networks
Thirtieth Anniversary (LCN’05), Taipei, Taiwan, November 17, pp. 336-343.

Mittra, S. (1997) ‘Iolus: a framework for scalable secure multicasting’, ACM SIGCOMM
Computer Communication Review, Vol 27, No. 4, pp. 277-288.

Perrig, A. (1999) ‘Efficient collaborative key management protocols for secure autonomous
group communication’, paper presented at the International Workshop on Cryptographic
Techniques and E-commerce (CrypTEC’99), Hong Kong, China, July 5-8.

Poornima, A.S. & Aparna, R., & Amberker, B.B. (2007a) ‘Key management for cumulative
member removal in secure group communication’, paper presented at the International
Conference on Embedded Systems, Mobile Communication and Computing, Bangalore,
India, August 3-5.

Poornima, A.S., Aparna, R., & Amberker, B.B. (2007b) ‘Storage and rekeying cost for
cumulative member removal in secure group communication’, International Journal of
Computer Science and Network Security, Vol. 7, No. 9, pp. 212-220.

Rafaeli, S. & Hutchison, D. (2003) ‘A survey of key management for secure group
communication’, ACM Computing Surveys, Vol. 35, No. 3, pp. 309-329.

Sherman, A.T. & McGrew, D.A. (2003) ‘Key establishment in large dynamic groups using one-
way function trees’, IEEE Transactions on Software Engineering, Vol. 29, No. 5, pp. 444-
458.

Waldvogel, M., Caronni, G., Sun, D., Weiler, N., & Platter, B. (1999) ‘The Versakey framework:
versatile group key management’, IEEE Journal on Selected Areas in Communications,
Vol. 17, No. 9, pp. 1614-1631.

Wallner, D., Harder, E., & Agee, R. (1999) ‘Key management for multicast: issues and
architectures’, IETF RFC 2627, The Internet Society, Washington, DC.

Wong, C.K., Gouda, M., & Lam, S.S. (1998) ‘Secure group communications using key graphs’,

Key Management Scheme for Cumulative Member Removal and Bursty Behavior 91

Proceedings of the ACM SIGCOMM’98 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, Vancouver, Canada, September
2-4, pp. 68-79.

Wong, C.K. & Lam, S.S. (2000) ‘Keystone: a group key management service’, paper presented
at the International Conference on Telecommunications (ICT), Acapulco, Mexico, May 20-
25.

Zou, X., Magliveras, S., & Ramamurthy, B. (2002) ‘A dynamic conference scheme extension
with efficient bursty operation’, Congressus Numerantium, Vol. 158. pp. 83-92.

Zou, X., Ramamurthy, B., & Magliveras, S. (2002) ‘Efficient key management for secure
group communications with bursty behavior’, Proceedings of the IASTEC International
Conference on Communications, Internet, and Information Technology (CIIT 2002), St.
Thomas, USVI, November 18-20, pp. 148-153.

About the authors

R. Aparna obtained her Ph.D. from Visvesvaraya Technological University, Belgaum,
Karnataka, India. She is presently working as an Associate Professor in the Department
of Computer Science and Engineering, Siddaganga Institute of Technology, Tumkur,
Karnataka, India. Her research areas include cryptography and network security, security in
sensor networks and database security.

B.B. Amberker is a Professor with Department of Computer Science and Engineering, National
Institute of Technology, Warangal, Andhra Pradesh, India. He received his Ph.D. from
the Department of Computer Science and Automation, Indian Institute of Science (IISc),
Bangalore, India. His research areas include algorithmic cryptography, number theoretic
algorithms, digital water marking and security in sensor networks.

