
MIS Review Vol. 18, No. 2, March (2013), pp. 19-50
© 2013 Department of Management Information Systems, College of Commerce

 National Chengchi University & Airiti Press Inc.

Optimal Software Release Policy Approach Using Test
Point Analysis and Module Prioritization

 Praveen Ranjan Srivastava1, Subrahmanyan Sankaran2, Pushkar Pandey2

1Information Technology and System Group, Indian Institute of Management, Rohtak
2Department of Computer Science & Information Systems, Birla Institute of Technology and Science

ABSTRACT: When to stop testing and release the developed software is the one of the most
important questions faced by the software industry today. Software testing is a
crucial part of the Software Development Life Cycle. The number of faults found
and fixed during the testing phase can considerably improve the quality of a
software product, thereby increasing its probability of success in the market.
Deciding the time of allocation for testing phase is an important activity of quality
assurance. Extending or reducing this testing time, depending on the errors
uncovered in the software components, can profoundly affect the overall project
success. Since testing software incurs considerable project cost, over-testing
the project can lead to higher expenditure, while inadequate testing can leave
major bugs undetected, thereby risking the project quality. Hence prioritizing the
components for testing is essential to achieve the optimal testing performance in
the allotted test time. This paper presents, a Test Point Analysis based Module
Priority approach to determine the optimal time to stop testing and release the
software.

KEYWORDS: Module Priority, Expendability, Test Point Analysis (TPA), Normalization,
Synchronization Factor, Maintenance Factor, Node Criticality, Reusability,
Function Points, Technical Complexity.

1. Introduction

Software testing is an expensive process. Many software organizations rely on the
expertise of technical managers to decide the time to be allocated to test the software.
The release time is thus mostly determined by prior experience. Research has shown
that, as much as 45% of the total software development cost is spent in testing. In many
projects, the time used in debugging can be around 50% of the total development effort
(Myers, 1976). Releasing an under-tested software may lead to the risk of latent bugs in
the software, leaving the customer dissatisfied and also incurring higher cost of removing
the faults post-release. While testing the software beyond a certain limit may lead to an
over-priced testing effort, resulting in loss of revenue. Also, a late release of the product in
business may result in losing the market foothold. This tradeoff needs to be balanced by
finding the optimal time of release and justifying the cost with the stop-test decision.

20 Praveen Ranjan Srivastava, Subrahmanyan Sankaran, Pushkar Pandey

There are pertinent questions, which need to be addressed on scenarios where major
bugs appear in a highly critical component of the software in a limited test time. After
major code changes, if new bugs are introduced into the software, testing time may also
include regression test.

However, exhaustive testing becomes too expensive and it is potentially impractical
to test the software until all the bugs are recovered and removed (Goel & Okumoto, 1981).
The management should be aware of the optimal testing time and cost required to test
the modules. Thus, a tradeoff is sought to balance the overall cost and business goals that
intends not to release a product with major bugs. It is essential to minimize the bugs after
the release, as the cost of fixing such bugs could be much higher than in test phase. Hence
prioritization of modules is pivotal to uncovering and fixing critical errors in allotted
testing time before software release wherein, some faults are allowed in an accepted range
instead of making the software product 100% error free (Mathur, 2008; Sommerville,
2011).

This paper presents a module prioritization technique to group the software
components on priority. This is necessary to ensure the maximum testing of highly critical
modules that impact the overall functionality of the project, thereby uncovering major
errors in the project (Srivastava, 2010). The ‘prioritization equation’ of modules ought to
stand pliable to both development and maintenance projects. This approach uses Test Point
Analysis (TPA®) (Saaty &Vargas, 2011) to determine total testing time to be allotted for
the software project. The prioritization of modules is done by Module Priority equation or
by the Analytic Hierarchy Process (Saaty &Vargas).

Test Point Analysis (Dekkers & Veenendaal, 1999) is a robust, industry wide used
technique to estimate the time of test phase in a project. This technique determines the
time that must be allotted for the total testing process based on various software metrics,
so that a delayed or premature release is avoided. After estimating test time, this paper
proposes an algorithm to share the testing effort of lower priority modules to higher
priority modules for achieving an optimal testing policy to release the software. Other than
TPA (Dekkers & Veenendaal) technique, prior works of Goel and Okumoto (1981) have
used non homogeneous poisson process to estimate the optimal time for release.

Next section gives the overview of the prior background work in this area. Section 3
discusses the proposed approach. Section 4 provides the merits of the proposed approach.
A comprehensive case study and comparison with the existing work are done in the
Sections 5 and 6 respectively. Finally, Section 7 presents the conclusion of the paper.

Optimal Software Release Policy Approach Using Test Point Analysis and Module Prioritization 21

2. Literature review

Finding an optimal testing time for the Software Development Life Cycle (Pressman
& Ince, 1992) lifetime has led to considerable work in the last few decades. Goel and
Okumoto (1981) have suggested an approach dependent on time and Non homogenous
poisson process (NHPP) (1981) to arrive at an optimal test policy. The stochastic process
models the bugs that appear in software testing phase in a probability distribution which
lays emphasis on number of faults detected during testing to decide the duration of the test
phase.

Dalal and Mallows (1988) have used an economic and stochastic model to
determine optimal testing time with a “stopping rule.” Musa and Ackerman (1989) have
presented software reliability model to predict when to stop testing. Software Reliability
is defined as the probability of failure-free operation of a system for a specified time in a
given environment (Mathur, 2008). Numerous software reliability models, better known as
Software Reliability Growth Models (SRGMs) (Lyu, 2007) have been proposed in the past
3 decades in order to determine the optimal software release time. Huang, Lyu and Lin
(Huang, 2005; Huang & Lin, 2006; Huang & Lyu, 2005) have proposed several SRGMs
in their papers to determine the optimal software release policy. SRGM based software
release policy is also used by Gokhale, Lyu and Trivedi (2006). Huang and Boehm (2006)
rely on COCOMO II cost-estimation model and the COQUALMO quality-estimation
model to determine when to stop testing the software. Fenton et al. (2007) propose
Bayesian Networks based approach decide the software release time. Quah (2009) uses a
predictive model based on Neural Networks and Genetic Algorithms for making software
release decisions. Srivastava (2010; 2008) has done considerable work in this field with
module prioritization. His paper describes a Component Prioritization Schema with
stringency and fault tolerance approach.

Weighing the demerits of prior work, Dalal and Mallows’ (1988) approach does
not allocate a specific test time before deciding the time to stop testing by the number of
faults encountered. Goel and Okomotu’s (1981) paper determines the time to be allotted
for testing, but uses a stochastic process to find the optimal testing time, depending on the
faults uncovered and is considered the mother paper for finding approaches to solve the
problem of when to stop testing. Thus, due to its seminal work three decades ago in the
field, this paper has been referred for the comparison with the proposed approach. The
above approaches do not prioritize the software components before applying a stopping
rule to determine if the software can be released.

Srivastava’s (2008) work uses the module prioritization approach, but the equation
of Module Priority is not flexible to change as per development and maintenance projects.

22 Praveen Ranjan Srivastava, Subrahmanyan Sankaran, Pushkar Pandey

Further, the Module Priority formula used in papers prior, mandate all parameters to be
available. However, in practice not all parameters to calculate the Module Priority might
be available easily. The above solution, does not consider the type of project i.e., software
development project or maintenance project while calculating priority.

TPA® (Dekkers & Veenendaal, 1999) is a registered trademark and industry
wide accepted method which gives accurate and robust results for total test time. The
reliability of TPA results lies in the fact that it covers all the factors that affects the
testing process directly or indirectly into its test time calculation process. The significant
parameters such as size, complexity, quality characteristics, user-importance of function ,
function usage-intensity, productivity figures (knowledge and skills of testing-team) and
environmental factors such as availability of test tools (automated tools for instance), test-
team experience, development and test environment etc., are considered for the test-time
calculation.

Each organization may have its own method other than TPA to determine the total
testing time. The next section covers the proposed TPA based Module Priority approach in
detail.

3. Proposed approach

The TPA (Dekkers & Veenendaal, 1999) based, weighted module prioritization is
presented below. Figure 1 shows the architecture diagram of the proposed approach. The
figure depicts the calculation of Module Priority from ‘Optional’ and ‘Fixed’ parameters.

Figure 1 Solution Architecture

Optimal Software Release Policy Approach Using Test Point Analysis and Module Prioritization 23

The project’s metrics that are divided into Fixed and Optional parameters help the project
in selectively choosing the metrics that suit the project. For example, a project with lot
of Database (DB) calls will have the optional parameter of ‘stress factor’ (see Section
3.1) in Module Priority calculation, while all fixed parameters like function point will be
mandatory to determine a module’s priority.

The ‘Fixed Parameters’ (refer to Section 3.1) are those software metrics (Pressman
& Ince, 1992) which is inherent in every software project and constitutes the major
metrics determining the characteristics of the project. While the ‘Optional Parameters’
(see Section 3.1) are the ones which does play a significant role in determining a project’s
characteristics but it varies from project to project and have not yet been incorporated as a
part of software project metrics yet.

After the module priorities are calculated, they are normalized (as seen in Figure
1) to the number range [0, 1] to ensure that all the software modules in the project
proportionally divide the numeric range [0, 1] as per their importance in project
functionality. Then the total test time for the project is calculated according to TPA
(Dekkers & Veenendaal). This test time and budgetary cost of testing is divided in the
same ratio as that of normalized Module Priorty values to award each module proportional
time to test and allot the modules, the proportional cost from the total allocated cost for
testing. Hence, if 3 modules in a project have module priorities of 0.2, 0.3, 0.5, they will
be allocated 20%, 30%, 50% respectively of the total project time and cost.

Finally, the KLOC heuristic algorithm is applied after the testing process is started
to determine the amount of cost and time a lower priority module can expend to a higher
module in case the latter exceeds its allotted time or cost. The periodic check to see if
modules exceed their allotted time, cost and the process of borrowing time and cost from
lower priority modules helps us thus. It gives the important modules, maximum time and
cost for testing, thereby helps form an optimal test release policy.

The Module Priority equation introduced here can be applied to both maintenance
and development projects. Since maintenance projects can be considerable in size in a
software firm’s portfolio, the Module Priority equation factors in this consideration as
well. TPA® (Dekkers & Veenendaal, 1999), an industry wide known approach is used to
estimate and allot the total time of testing for the software project.

The basic steps of this papers’ solution are:

•	 Software	modules	are	prioritized	on	multifarious	metrics	(elaborated	in	Section	
3.1) and the priority of each module is obtained in the range of [0, 1]. It is
important to note that the sum of all module priorities is 1.

•	 Time	units	to	be	allotted	for	testing	using	TPA®	are	calculated	to	divide	the	cost	

24 Praveen Ranjan Srivastava, Subrahmanyan Sankaran, Pushkar Pandey

(budget of testing) and time allotted in the ratio of the calculated Module Priority.
Thus, if 3 modules in a project have module priorities of 0.4, 0.3, 0.3, they will be
allocated 40%, 30%, 30% respectively of the total project time and cost. This is
the maximum ‘Allowance’ (time, cost). Division of time and cost as per priority
helps the objective of deeper testing of highly critical modules. This division
ensures the partition of test time as per the priority of modules.

•	 Testing	 is	started	and	 the	KLOC	bucketing	algorithm	(Section	3.4)	 is	used	 to	
check for cost and time overrun so that the lower priority module can give cost
and time units to higher priority modules.

The steps described above have been implemented in the Module prioritization tool
application (see Appendix), developed to test and validate our approach. This is a project
management tool that uses the approach presented in this paper to arrive at an optimal test
release time. The module prioritization tool takes a project xml file with all the metrics
mentioned in system architecture diagram of Figure 1 to calculate priority of all modules.
The tool provides features to compute total test time using TPA and has options to borrow
cost and time from lower priority modules and expend to higher priority modules. The
updated Gantt chart after this process helps a project manage the test phase effectively.

The above solution is explained in depth below.

3.1 Prioritization of modules

The software modules are prioritized, so that the most crucial modules get maximum
time in the testing phase. This step is pivotal to an optimized release time and caters to
finding the critical errors that need to be uncovered in testing phase. The parameters in
these classes are named as Optional and Fixed parameters.

These Optional and Fixed parameters become the prioritization criteria for
maintenance and development projects. Two types of parameters are conceptualized
in this paper to ease us with projects that may not have all the Optional parameters in
determining Module Priority.

3.2 Rationale for optional and fixed parameters

While prioritizing modules in a project, there is a need to recognize that all projects
have in common, parameters like LOC or function points etc., which are important and
can be obtained or calculated. These parameters are important across all projects and
play a significant role in determining module complexity and priority. Yet there can be
other parameters that may determine priority like DB calls or threads and these may not
be seen in all projects. Two types of parameters are conceived to ease us with projects
that may not have all the Optional parameters in determining Module Priority. However,

Optimal Software Release Policy Approach Using Test Point Analysis and Module Prioritization 25

fixed parameters are mandatory to determine a module’s priority. These are indispensable
as these serve as a minimum requisite to determine the priority of a module. Hence it is
proposed to categorize parameters into Fixed and Optional Parameters.

3.2.1 Fixed parameters (ascertainable in every project)

Function Points/KLOC in Module (where KLOC is Kilo Lines of Code), Node
Criticality, Technical Complexity, Coupling in the Module, Reusability (Object Oriented
(OO) or Procedural).

LOC metric may not be suitable for every project such as in a web application and
thus in such a case, function points could be used. However, a legacy system code could
use either function points or the LOC metric.

These parameters do not disappear (unlike Optional parameters) with project type,
and the above values can be calculated for all projects. A brief definition for the above
fixed parameters is provided below.

Node Criticality: All those modules which are critical to the software project and lie on
the critical path in the CPM (Critical Path Method) network (Hughes & Cotterell, 2002;
Pressman & Ince, 1992).
Function Points: Software metric used as a means to measure the functionality delivered
by the system (Albrecht, 1979; International Function Point Users Group, 1994a; 1994b).
Technical Complexity: It is the complexity of a module which is determined by counting
the number of predicate nodes (Goel & Okumoto, 1981; Pressman & Ince, 1992).
Coupling: It is a measure of the relative interdependence among modules (Chidamber &
Kemerer, 1994).
Reusability: This is the amount of external and inbuilt libraries a module uses to
accomplish its functionality, thereby measuring the degree of reuse (Jacobson, Griss &
Jonsson, 1997).

3.2.2 Optional parameters

Stress factor (calculated from the maximum number of DB calls and Data in
a Project scope), Synchronization factor (obtained from the number of threading/
synchronization primitive calls in a program). Maintenance factor for maintenance
projects (calculated from number of change requests CR’s from a module), Frequency of
occurrence in Primary Use cases/Flow.

The Risk of Failure of a module (a probability value) may be determined from the
above defined optional parameters. Not every project will use threading, or would have
database calls distributed across the code. Albeit these parameters increase complexity and
chance of failures, they fall in Optional parameters.

26 Praveen Ranjan Srivastava, Subrahmanyan Sankaran, Pushkar Pandey

Module Priority equation or the AHP Process (Vargas & Saaty, 2001) is used to
calculate Module Priority.

3.3 Prioritization of modules by module priority equation

The Module Priority is calculated from the above parameters as

Module Priority (un-normalized) =
(W1

* P1 + W2
* P2 + … + Wn

* Pn)
W1 + W2 + … + Wn

 or,

MPui =
∑Wi

* Pi

∑Wi
, (0 < MP < ∑Wi) (1)

Where Wi and Pi are the weight and parameter value for the ith parameter. It is
important to note why we multiply the weight with the parameter as the weights are used
to increase the influence or decrease the influence of a parameter in the Module Priority
equation. This formula was devised by looking at the CGPA (Cumulative Grade point
average) calculation in any university where important “subjects” receive higher “credits”
and have a larger contribution to the CGPA. Thus, in the proposed approach, the “subjects”
map to the “parameters” and the “credits” map to the weights in our equation. The weights
for parameters can be determined by the Technical Manager in a project. This is done by
taking into account factors like experience, capability of the manager and by also looking
at similar projects in the same environment.

Module Priority formula above assigns weights from 5 through 1 to parameters.
The management can decide to award the highest weight to a parameter if there are a lot
of threading calls in the module and the module falls under the Critical path (Hughes &
Cotterell, 2002). Thus this module could be assigned a ‘Node criticality’s weight to be 5
(see Table 1).

Table 1 Priority Weights Associated with Priority Levels
Highest 5
High 4
Medium 3
Low 2
Lowest 1

Thus a Maintenance project with lot of threading calls will have Module Priority
calculated as:

Optimal Software Release Policy Approach Using Test Point Analysis and Module Prioritization 27

MPui = Weight1
＊ Node Criticality + Weight2

＊ Function Points + Weight3
＊ Reusability

+ Weight4
＊ Synchronization Factor＊ Weight5

＊ Maintenance Factor / (Weight1
+ Weight2 + … + Weight5)

3.4 Selection of optional and fixed parameters

The selection of fixed parameters is based on judgment of the project manager. In
the fixed parameters, function points over KLOC might be chosen if the programming
language inherently takes more lines of code to achieve functionality, yet any one should
be included in the prioritization formula.

A web application project could also use the function points as the fixed parameter
as LOC metric is not suited to such a project. Similarly, optional parameters chosen or
discarded are also based on judgment of the project manager by looking at factors like
DB calls or threading calls that affect performance or have chances of program crashes or
bugs. The manager may look at empirical evidence to decide the optional parameters by
looking at number of bugs, crashes from previous projects with modules having extensive
DB calls, threads.

For example, a development project with no threading calls will have all fixed
parameters and no Synchronization factor in MPui calculation.

Module Priority (MP-normalized) is calculated as:

MPi =
MPui

MPu1 + MPu2 + … + MPun
 (2)

Development projects would use all the Fixed Parameters with Optional Parameters
like Synchronization factor, if the project used considerable threading. A maintenance
project will have maintenance factor (number of service requests) to prioritize modules.

The strength of the MPi formula lies in the fact that it incorporates all major software
metrics, which provide a robust assessment of the modules. Hence, depending upon the
MPi values, the module prioritization task is more efficient, effective and reliable.

3.5 An alternative prioritization technique for modules by analytic hierarchy process

The manager may also prioritize the modules by using Fixed and Optional
parameters using the AHP Process (Saaty & Vargas, 2001). The management has to use
its judgment to decide which parameter is weighted how much with respect to other

28 Praveen Ranjan Srivastava, Subrahmanyan Sankaran, Pushkar Pandey

parameters. The process for determining Module Priority by AHP is described below:

Step 1: All the Optional and Fixed Parameters are written in matrix form and the manager
decides the relative importance of one parameter over the other. This is done by
considering factors like: experience, capability of the manager and also by looking
at similar projects in the same environment (see Table 2). (Note: The matrix below
shows only 5 criteria for ease of explanation. The real matrix would have all the
parameters (Fixed and Optional, written in matrix form with relative importance
to arrive at Module Priority.)

Table 2 Matrix to Decide the Relative Importance of Optional and
Fixed Parameters

Node
Criticality

Function
Point

Technical
Complexity Coupling Reusability

Node Criticality 1/1 2/1 2/1 3/1 4/1
Function Point 1/2 1/1 1/2 1/2 3/1
Technical Complexity 1/2 2/1 1/1 1/2 2/1
Coupling 1/3 2/1 2/1 1/1 3/1
Reusability 1/4 1/3 2/1 1/3 1/1

Step 2: Express the matrix by replacing fractions by decimal. The matrix can be called A
(see Table 3).

Table 3 Matrix (in decimal) to Decide the Relative Importance of
Optional and Fixed Parameters.

Node
Criticality

Function
Point

Technical
Complexity Coupling Reusability

Node Criticality 1 2 2 3 4
Function Point 0.5 1 0.5 0.5 3
Technical Complexity 0.5 2 1 0.5 2
Coupling 0.333 2 2 1 3
Reusability 0.25 0.333 2 0.333 1

Step 3: The matrix is squared and the eigen vectors are found (see Table 4).

Optimal Software Release Policy Approach Using Test Point Analysis and Module Prioritization 29

Table 4 Matrix (Squared) to Decide the Relative Importance of Parameters
Node

Criticality
Function

Point
Technical

Complexity Coupling Reusability

Node Criticality 4.99 15.33 19 9.33 27

Function Point 2.1665 5 9 3.75 9.5

Technical Complexity 2.665 6.66 8 4.16 13.5

Coupling 3.41 9.66 11.66 5 17.32

Reusability 1.7739 5.82 5.325 2.215 8

The row totals are added and normalized to get the eigen vector shown below:

[0.3598]
[0.1398]
[0.1664]
[0.2238]
[0.1100]

Step 4: The process is repeated by multiplying the matrix again with matrix A to
normalize until the eigen vectors converge with previous step up to an accuracy of
4 decimal places. The vector determines the priority of each criterion and offers
ranking of the criteria as shown below (see Figure 2):

Figure 2 Ranking of Criteria is Determined

30 Praveen Ranjan Srivastava, Subrahmanyan Sankaran, Pushkar Pandey

Step 5: On each criterion (parameter), the modules (Say M1, M2, and M3) are ranked by
relative importance to draw up a matrix as shown below for one parameter (see
Table 5).

Table 5 Matrix Showing Ranking of Modules
Node Criticality

M1 M2 M3
M1 1/1 2/1 3/1
M2 1/2 1/1 4/1
M3 1/2 1/4 1/1

Step 6: The matrix for each criterion is defined and eigen vector is found for each matrix.

Step 7: Module Priority is obtained by multiplying [Module, Criteria] Matrix with the
Initial Criteria Ranking Matrix (see Table 6)... to get the module priorities as
shown in Table 7:

Table 6 [Module, Criteria] Matrix and Criteria Matrix are Multiplied to
Get Module Priorities

Node
Criticality

Function
Points

Technical
Complexity Coupling Reusability Criteria

Rank
M1 4.99 15.33 19 9.33 27 0.35
M2 2.1665 5 9 3.75 9.5 0.139
M3 2.665 6.66 8 4.16 13.5 0.166

Table 7 Module Priorities are Determined
M1 0.5
M2 0.3
M3 0.2

(Note: The above matrix has imaginary values)

Once the priority of modules is found using either Module Priority equation or the
AHP Process (Saaty & Vargas, 2001), the cost and time for modules are allocated
based on priority.

Optimal Software Release Policy Approach Using Test Point Analysis and Module Prioritization 31

3.6 Allocating time, cost based on module priorities

From the Module Priority values, the total time-units obtained by TPA is distributed
among the various modules. The time and cost limit allotted to each module is called the
‘Maximum Allowance’ or Allowance (Time, Cost) of the module. As the name suggests,
this is the maximum allotted time & cost for each individual modules.

Time(max)i = MPi
＊ Total time units (3)

Time(max)i = MPi
＊ Total test budget (4)

 Each module has its Allowance (Tmax, Cmax) value. Allowance (max) used from here
denotes the maximum cost or time allotted for the module.

Figure 3 shows the Gantt chart (Greene & Stellman, 2005) showing the individual
allowance for each modules M1, M2 and M3 of a software project to undergo testing.

Figure 3 Project Gantt Chart after Awarding Cost, Time to Mules as per Module
Priority

Clearly, Allowance (max) for the module M1 is greatest since its Module Priority value is
the highest; M3’s Allowance (max) is lowest as it is the module with least priority.

Since module M1 has the highest priority, it is one of the most important and critical
modules in the software and it becomes imperative that such a high priority module must
be tested as fully as possible. But what if the testing time for Module M1 (i.e., Allowance
(max)) runs out and thus leaving the module M1 partially tested. Obviously, M1’s testing
can’t be dropped to proceed to test the next modules if lower priority modules can be used
to borrow test time and cost. To avoid a bug in M1 that may cripple the software with
critical faults, one solution is to continue the testing process until module M1 is tested
completely.

Next section describes an optimal approach called ‘Expendability’ that is used to
borrow time and cost from lower priority modules and expend the same to higher priority
modules.

3.7 Expendability

In order to ensure that the high priority modules are tested fully, the idea of

32 Praveen Ranjan Srivastava, Subrahmanyan Sankaran, Pushkar Pandey

‘Expendability’ is introduced. It may happen that the testing time for high priority
modules run out. In such a situation, a slice of time (or cost, depending upon time or cost
the project considers to measure testing phase) is taken away from the lowest priority
module’s share of time-slot/cost in order to continue the testing process of modules with
high priority. The amount of time a module can ‘give up’ or expend to a higher priority
module is termed as Expendability. The individual time limit or time-slots or Allowance
(max) for each module to undergo testing is already available.

Expendability is based on any of the following two parameters.

•	 Node	Criticality	:	Found	by	Critical	Path	Method	(CPM)	(Dekkers	&	Veenendaal,	
1999; Hughes & Cotterell, 2002)

•	 Number	of	requirements	the	component	fulfills	 in	the	primary	Use	Case	(if	 the	
user interacts with the system)

Expendability is calculated in the following manner.

Expendability equation:

Expendability = devi / ∑devi (5)

Where, devi = deviations from next higher priority module.
 ∑devi = sum of all deviations.

Deviation (devi) calculation:

Deviations are calculated based on the individual Node-criticality values of the
modules.

devi = Nci-1 - Nci (6)

Where, Nc = Node Criticality.

The above Expendability equation has been explained more clearly with the help
of an example in Section 5. Figure 4 below shows the Gantt chart with Expendability
depictions for the respective modules. Amount of Expendability is shown with the white-
shades.

Each lower priority module expends its share of time and cost to its higher priority
module whenever the testing time or cost of the latter runs out and thus the higher priority

Optimal Software Release Policy Approach Using Test Point Analysis and Module Prioritization 33

modules which are critical, get additional time, cost to continue their testing, hence
reducing the risk of the critical modules not being tested completely. If the expendability
of a module becomes negative, then it is set to zero. There is a rare chance when a lower
priority module gets higher value of Node Criticality than a higher priority module.

After testing is started, it is essential to define a stopping rule for the test phase. It
is also necessary to handle the scenario where a higher priority module requires more
time/cost than its maximum Allowance (Cost, Time). This section explains the KLOC
bucketing heuristic algorithm for an optimal test policy.

3.8 KLOC bucketing heuristic algorithm

The Allowance (maximum cost or time allotted to a module) is calculated by
dividing the total time (found by TPA (Dekkers & Veenendaal, 1999)) and the total testing
budget in the ratio of Module Priorities. Hence the Tmax (maximum time to test a module)
and Cmax (maximum cost to test a module) are obtained and form the Allowance (Cost,
Time) used in the algorithm below. If a project evaluates allowance by cost, Allowance
(Cost, Time) returns cost. It returns time otherwise. The Algorithm is shown below.

(1) For Index = Highest to lowest MP,
 If(Allowance(current) < Allowance (max))
 Continue testing;

(2) While (Allowance(current) >= Allowance (max))
 Find Min (List (MP1, MP2…, MPn))

(3) Compute Expendability of MP (min)

(4) Use KLOC bucketing Heuristic to decide low priority module

(5) Update

 Tmax of MP (min) =
 Tmax of MP (min) - Expendable (time)

 Cmax of MP (min) =
 Cmax of MP (min) - Expendable (cost)

 Update Allowance (max) for MP (min)

Figure 4 Project Gantt Chart after Expending Cost, Time from M2, M3 to M1

34 Praveen Ranjan Srivastava, Subrahmanyan Sankaran, Pushkar Pandey

(6) Remove MP (min) from List
 Tmax of MP (max) =
 Tmax of MP (max) + Expendable (time)

 Cmax of MP (max) =
 Cmax of MP (max) + Expendable (cost)

(7) Update Allowance(max) for MP (min)

(8) End While

The above algorithm is used in the testing phase to check against cost or time over-
run (Step 2). In such a scenario, the expendability for all modules lower in priority to the
current module is computed to borrow time/cost units (Step 5) for the current module.
This process continues for all the modules except the least priority module. Step 4 in the
algorithm is explained in the next section.

3.9 Stopping rule

The above algorithm runs for two iterations before it is halted. It is upon the project
manager to decide whether to go for the third iteration to borrow time and cost from lower
priority modules. The project manager might want to go for the 3rd iteration in some
cases if he feels that some more time should be given on testing the modules. So it is the
manager’s discretion to extend the time for testing if he feels to do so, depending upon the
deadlines.

KLOC bucketing heuristic is used to group modules depending on code size. This
heuristic groups modules with similar priority and near code size (KLOC) into the same
buckets. Then the algorithm ensures that a larger module within a bucket of low priority
modules (from the group of buckets) expends time and cost, than other modules with less
code size within the same bucket, so that not all lower priority modules in a bucket expend
time or cost.

4. Merits of this approach

This approach uses a Module priority calculation technique that is flexible to fit with
maintenance and development projects. As it follows the TPA (Dekkers & Veenendaal,
1999) approach to allot time and cost for each module with calculated module priorities,
it is more accurate and robust as compared to the stochastic and probabilistic based
approaches. This is because former involves all the major software metrics and quality
characteristics for the time estimation while the latter approaches are based mainly on

Optimal Software Release Policy Approach Using Test Point Analysis and Module Prioritization 35

assumptions. The proposed approach also ensures that no critical modules are left un-
tested completely. Our proposed algorithm iterates until the stopping rule is met and the
management is left to decide when to stop testing after evaluating the extra time, cost each
higher priority module has been awarded. A pivotal facet in contrast to Goel and Okumoto
(1981) and Dalal and Mallows (1988) approach is these two models don’t use the concept
of borrowing from low priority modules to higher priority modules.

The next section presents a case study, where a well known open source project from
Apache Software Foundation (International Function Point Users Group, 1994a) is chosen
to calculate the priorities of modules as per the described metrics.

Then the KLOC heuristic algorithm is applied to analyze the amount of time and cost the
higher priority modules receive in case of overrun, thereby illustrating the optimal test
release policy of this paper.

5. Case study

An open-source project was taken from Apache Software Foundation (Logging
Service, 2012) in order to analyze the proposed approach. This was then compared to Goel
and Okumoto (1981), Dalal and Mallows’s work (1988) and Srivastava’s work (2008)
and the results drawn as a graphical presentations shown in Section 6 (Figure 10, Figure
11, Table 10 and Table 11). The approach uses to calculate Module priorities by Module
Priority Equation (1) and not the AHP process (Vargas & Saaty, 2001).

5.1 Apache Logger

Every software application includes logging/tracing APIs during its development
phase as it plays an important role in tracing the entire build and execution process of an
application code. It simplifies the job of debugging to a great extent. The Apache logging
project - “log4xxx” logs statements in a file with efficiency and reliability (Greene &
Stellman, 2005). The Apache logger project has a configuration file (an XML file) which
could be changed according to the requirements. It has mainly three modules, namely
Logger, Appender and Layout (Logging Service, 2012). Figure 5 depicts the basic
architectural context diagram for the Logging project.

The main logger modules are explained as follows:

Logger- Creates a singleton class and initializes the Logger engine. It defines functions to
log statements with TRACE, DEBUG, INFO, WARN, ERROR, FATAL levels.

Appender- Determines the output mode to write the logs and defines classes to write to
Console, File and other output modes

36 Praveen Ranjan Srivastava, Subrahmanyan Sankaran, Pushkar Pandey

Layout- Defines classes to add functionality to have varied layout options to the log
statement.

Calculating Module Priority (MP):
Module Priority (MPui) = ∑Wi

* Pi / Wi

Weighted priority for KLOC = 3
Weighted priority for Coupling (Cp) = 4
Weighted priority for TC = 5
Weighted priority for Reusability (Re) = 4
Weighted priority for Node Criticality (Nc) = 4
The values are shown in the Table 8.

Table 8 Project Metrics Calculated in Apache Logger Project
Modules KLOC Coupling (Cp) Technical Complexity (T.C) Reusability Nc

Logger 4.726 0.925 14 51 3
Appender 3.728 0.895 12 34 2
Layout 2.157 0.895 8 35 1

Step 1: Calculate Module Priority (MP)

Module Priority (MP) values for the respective modules in the Logger project are given
below.
Logger Module:

(3＊KLOC + 4＊Cp + 5*Tc + 4＊Re + 4＊Nc)/	∑Wi
= (3＊4.726 + 4＊0.925 + 5＊15 + 4＊51 + 4＊3)/ 20 = 15.44.

Figure 5 Apache Logger Modules in Program Flow

Optimal Software Release Policy Approach Using Test Point Analysis and Module Prioritization 37

Similarly,
For Appender Module: MP = 10.938
 Layout Module: MP = 9.657

Step 2: Normalization of Module Priorities:-

MP1 (Logger) = (MP1/ (MP1 + MP2 + MP3)) = 15.44/ (15.44 + 10.938 + 9.657) = 0.428
MP2 (Appender) = (MP2/ MP1 + MP2 + MP3) = 0.303
MP3 (Layout) = (MP3/ MP1 + MP2 + MP3) = 0.267

Therefore, MP1 > MP2 > MP3

Step 3: Determine total testing time using TPA (Vargas & Saaty, 2012):

Using the various steps, equations and formulae given in TPA method (Dekkers
& Veenendaal, 1999) the total Test-Hours are calculated. A brief overview of the main
steps and formula taken from the TPA method (Dekkers & Veenendaal) are given below.
The appropriate values for TPA parameters of Logging project have been used in the
calculation depicted below.

Step 3.1: Calculate the Dynamic Test Points (TPf) (Dekkers & Veenendaal, 1999)

TPf = FPf * Df * Qd (7)

Where TPf = number of dynamic test points assigned to each individual function.
 FPf = number of function points assigned to the function.
 Df = function dependent factors.
 Qd = dynamic quality characteristics.

IFPUG CPM 4.0, (International Function Point Users Group,1994a; 1994b), a widely
accepted standard, is employed for computing the function points in this paper.

TPf (Logger) = 87.3 * 1.2 * 1.005 = 105.805
TPf (Appender) = 40.94 * 0.96 * 0.825 = 32.422
TPf (Layout) = 19.36 * 0.75 * 0.825 = 11.979

Step 3.2: Calculate the total number of test points (TP)

TP = sum total (TPf) + (FP * Qs)/500 (8)

38 Praveen Ranjan Srivastava, Subrahmanyan Sankaran, Pushkar Pandey

Where TPf = the number of dynamic test points.
 Fp = the Function Point count (FP) for the complete system to be tested.
 Qs = Static Test Points
 ∑TPf = 150.206

TP = ∑TPf + (∑FPf * ∑Qs)/ 500
= 150.989 + (∑FPf * ∑Qs)/ 500 = 150.989

Step 3.3: Calculate the primary test hours (PT)

PT = TP * S * E (9)

Where TP = The total number of test points for the complete system under testing.
 S = Skills factor
 E = Environmental factor
 PT = 140.12 * 1 * 1.5 = 210.18

Step 3.4: Calculate the total number of test hours (TH).

TM = PT * (T + C)/ 100 (10)

PT * (T + C)/ 100 = 200.01

TH = PT + TM (11)

Where TM = Team Management Allowance
 PT = The primary test hours
 T = The team size factor
 C = The planning and control factor

TH = 210.18 + 200.01 = 410.19 hours

By applying above steps to the Apache Logger Module (Logging Service, 2012), the value
for TH is calculated to be 410.19 hours.

Optimal Software Release Policy Approach Using Test Point Analysis and Module Prioritization 39

The Gantt chart as shown in Figure 6 is drawn based on the above values of Module
Priority (MP). Total time unit calculated by TPA is distributed among the modules
depending on their MP values. E.g., if there are 410.19 total time units as calculated by
TPA method, then module M1 gets MP1 * 410.19 = 0.426 * 410.19 = 174.47 time units.
Similarly for M2 = 0.303 * 410.19 = 124.28 and M3 = 109.52.

Figure 6 Logger Project Gantt Chart Initially after Allotting Time, Cost
to M1,M2 and M3

Step 4: Next, Expendability is calculated in the following manner:

Let the Node-criticality of the modules be:

MP1 = 5
MP2 = 3
MP3 = 1

Therefore devM2 (from M1) is: - 5 – 3 = 2
Similarly devM3 (from M1) is: - 5 – 1 = 4
∑dev (sum of all deviations) = 2 + 4 = 6.

Therefore ExpM2 (Expendability of M2) = dev/ ∑dev = 2/6 = 1/3.
Similarly ExpM3 = dev/ ∑dev = 4/6 = 2/3.

Gantt chart with the Expendability calculation is shown in Figure 7.

White-strips in the Gantt chart are the Expendability values that could be expended
to the higher priority modules. In case the testing time-slot for M1 get exhausted and M1
is still not completely tested, then 2/3rd of M3 time-slot will be expended to M1; i.e., 2/3
* 109.52 = 73.01. Therefore, the updated time-slot (Allowance (new)) of M1 = 174.47 +
73.01 = 247.48 units. And M3’s time-slot reduces to 109.52 – 73.01 = 36.51 units. The
iterations are shown in Figure 7 and Figure 8.

Figure 7 Gantt Chart after Calculating Expendability Cost, Time of M2, M3

The white space in the above Gantt chart shows the time/cost being awarded to M1

40 Praveen Ranjan Srivastava, Subrahmanyan Sankaran, Pushkar Pandey

from M2 and M3. Figure 8 shows the expendability of M2, M3 merged to M1. No more
time or cost will be expended to M1 if an overrun occurs. Figure 8 also depicts the next
iteration of expendability that calculates the share of time, cost M3 will give to M2 while
testing M2.

Figure 8 Gantt Chart with Expendability Space in M3 to be Given to M2

In the second iteration of the algorithm, the testing of M1 is complete. Figure 9
shows M2 being tested and borrowing time, cost from the least priority module M3. Hence
the expendability white space of M3 being merged to M2 is depicted in the below figure.

Figure 9 Gantt Chart after Expending Cost, Time from M2, M3 to M1

The next section presents a comparison between this paper’s approaches to prior
approaches discussed in Section 2.

It is also important to note that we tested the proposed approach of module
prioritization with other in-house projects like Student’s Registration System, Library
Management System and other open source applications, but chose the Apache Logger
Project (Logging Service, 2012) to be included in the paper for ease of illustration.

5. Comparison

The proposed approach has been compared with the other standard approaches and
the comparison is thus justified with graphical representation in (Figure 10, Figure 11,
Table 10, and Table 11)

5.1 Goel & Okumoto’s work

It follows a time-dependent & non-homogenous poisson based model to determine
the optimal time for testing. Goel and Okumoto’s model says:

If m(t) is the expected number of software failures detected in time t., then

Optimal Software Release Policy Approach Using Test Point Analysis and Module Prioritization 41

m(t) = E(N(t)) (12)

where, N(t) is the cumulative number of faults encountered in time t and

Goel and Okumoto have shown that m(t) can be described as:

m(t) = a(1 - e-bt) (13)

When	t	→	∞,	then	m(∞)	=	a.

Where ‘a’ represents expected number of faults detected in the entire life time of the
software and b represent the detection rate of the individual fault and its value depends
upon quality of testing.

5.2 Comparison with the paper’s proposed approach

The Goel & Okumoto model (1981) was applied to the Case Study “Apache Logging
Application” (Logging Service, 2012) (an open source project) and the results are given
below. Appropriate values for the time estimation are chosen.

a = 56860; b = 0.124; c1 = 10; c2 = 50; c3 = 1,000; t = 1,000 units

Then a＊b = 7050.64 and Cr = 25
Since a＊b > Cr, the optimal test policy will be

T = min (1/b ln (ab/Cr), t)
Therefore T＊ = min (45.5, 1000)

T＊ = 45.5

Therefore, the total estimated time-units come out to be 45.5 units. Time-units are
mapped to staff-days.

With the TPA approach, the total time to test was 410 hrs i.e, 410.19/10 (if each staff-
days = 10hrs) = 41.01units (in days).The comparison graph between these two models is
shown below.

Thus, from graph in Figure 10, it can be seen that the TPA based approach results in
less time to release the software for this case study.

5.3 Comparison with the Dalal & Mallow’s Approach

Dalal and Mallow (1988) present a stochastic based model which assumes that there
are N unknown faults in the system while this paper uses a TPA based approach instead of
a stochastic model. This paper first calculates the total test time using TPA as opposed to a

42 Praveen Ranjan Srivastava, Subrahmanyan Sankaran, Pushkar Pandey

stopping rule based on number of faults. The algorithm normally stops (further iterations
are possible if the management decides to expend more time, cost) with the second
iteration of KLOC Bucketing Heuristic Algorithm (Section 3.4) where the lower priority
modules expend their time, cost to higher priority modules than a faults based stopping
rule.

The fundamental difference in this approach to Dalal’s, is the estimation of total test
time. While Dalal’s work only used a stopping rule with a stochastic process with respect
to the number of faults detected in the system, our approach estimates the time of test first.

5.4 Praveen R. Srivastava’s Approach

This model prioritizes the modules on a priority scale from very high to very low
depending upon the values obtained from the Cumulative Score (CS).

The formula for CS is presented as follows:

CS = eCR * KLOC * CC * CP/ KLOCavg (14)

Where CR= Component Rank, CC = Cyclomatic Complexity. CP = customer priority
(assigned a default value, if not specified by the customer), KLOC = Kilo lines of Code,
= average of all the KLOCs.

Figure 10 Optimal Test Days Calculated for Logger Project with Goel-
Okumoto and TPA Approach

Optimal Software Release Policy Approach Using Test Point Analysis and Module Prioritization 43

 This formula is applied in the Case Study (Apache Logger project) as below.

Component Rank (CR) (Musa &Ackerman, 1989):

First, all the modules get the equal CR. Since there are 3 modules in total, each
module will get CR = 0.33. As M2 & M3 both are dependent on M1, therefore,

CRnew(M1) = C2(M2)/ 2 + C3(M3)/ 2 (15)

Or CRnew (M1) = 0.33 + 0.33 = 0.66
Both M2 & M3 has 2 out-bound links,
 CRnew (M2) = 0.33/2 = 0.165
Similarly, CRnew (M3) = 0.165

Calculating Cumulative Score (CS) (Musa &Ackerman, 1989):

CS = eCR * KLOC * CC * CP/ KLOCavg

CS(M1) = e0.66 ＊ 4.726 ＊ 14 ＊ 0.925/(4.726 + 3.728 + 2.157) = 11.16

CS(M2) = e0.165 ＊ 3.728 ＊ 12 ＊ 0.895/(4.726 + 3.728 + 2.157) = 4.45

CS(M3) = e0.165 ＊ 2.157 ＊ 8 ＊ 0.890/(4.726 + 3.728 + 2.157) = 1.716

Clearly,

CS(M1) > CS(M2) > CS(M3). Based on their Cumulative score each module is
allotted a priority weight from high to low (see Table 9).

Table 9 Priority Levels with Weights in Praveen’s Model
Modules Priority Wts. Priority Type

M1 1 High
M2 2 Medium
M3 3 Low

To compare the proposed approach and Praveen’s Module Priority approach, a
simple maneuver is done to convert Praveen’s Module Priorities within a range of 0 to 1.

Thus M1 (new) = (sum of all weights) – (m1’s weight) / [(sum of all weights)] =
6-1/6 = 5/6 = 0.833. Similarly, M2 (new) = 6-2/6 = 4/6 = 0.66, M3 (new) = 6-3/6 = 3/6 =
0.5

The comparison graph between TPA based Module Priorities and Praveen’s set of

44 Praveen Ranjan Srivastava, Subrahmanyan Sankaran, Pushkar Pandey

modules priorities is plotted in Figure 11.

Figure 11 Module Priorities for M1, M2, and M3 Calculated from
Praveen’s Approach, TPA Based Model

Where, CS (in Table 10) stands for Cumulative Score (1989).

Table 10 Module Priority vs Cumulative Score
Modules CS MP

Module 1 0.833 0.428
Module 2 0.66 0.303
Module 3 0.5 0.267

Thus, it can be seen from the above graph that Module Priorities are in same order of
priority from both the models. This graph illustrates that Module Priority calculated from
optional and fixed parameters does not affect the order of priority in modules, yet there is
more flexibility in choosing project metrics in this paper’s Module Priority equation.

5.5 Advantage over Praveen’s approach

This paper’s approach allows the flexibility to choose Function points or KLOC and
use Critical path or ‘number of use cases’ to determine the criticality. The equation for
Module Priority is flexible to change as per the type of project. Table 11 below shows a
comparison of the TPA based approach with these prior models.

Optimal Software Release Policy Approach Using Test Point Analysis and Module Prioritization 45

Table 11 Comparison of Prior Model with TPA Based Module Priority Approach

Criteria/Model Dalal Goel and
Okumoto

Praveen’s
Model

TPA’s
Model

Prioritization of modules with equation
Modified priority equation for development and
maintenance projects

Feasibility to add Fixed and Optional parameters
for threading and high intense projects

Faults based stopping rule
Time of test estimation
Lending of time, cost to higher priority module

6. Conclusion

The proposed Module Priority approach using TPA (Dekkers & Veenendaal, 1999)
gives accurate and robust results (as per the industry standards) to determine Module
Priority and total test time. Since it involves allotting a test time by TPA (Dekkers &
Veenendaal) unlike prior models, it ensures a reasonably accurate time awarded for the test
phase. Module Priority normalization ensures that higher priority modules get maximum
test time than other less important modules. Further, the concept of Module Priority fits
for maintenance and development projects and it can also be extended for re-engineering
projects. This approach ensures that the critical modules are tested to the fullest in a given
test time. This model also buckets the modules so that the higher priority modules can
first borrow units from lower priority modules with greater KLOC, so that even the lower
priority modules with least KLOC have a better chance of not being ignored in testing.

References

Albrecht, A.J. (1979), ‘Measuring application development productivity’, Proceedings of the
Joint SHARE, GUIDE, and IBM Application Development Symposium, Monterey, CA,
October 14-17, pp. 83-92.

Chidamber, S.R. and Kemerer C.F. (1994), ‘A metric suite for object oriented design’, IEEE
Transactions on Software Engineering, Vol. 20, No. 6, pp. 476-493.

Dalal S.R. and Mallows C.L. (1988), ‘When should one stop testing software?’, Journal of the
American Statistical Association, Vol. 83, No. 403, pp. 872-879.

Dekkers, T. and Veenendaal, E. (1999), Test Point Analysis: A Method for Test Estimation,

46 Praveen Ranjan Srivastava, Subrahmanyan Sankaran, Pushkar Pandey

Shaker, Maastricht, the Netherlands.

Fenton, N., Neil, M., Marsh, W., Hearty, P., Marquez, D., Krause, P. and Mishra, R. (2007),
‘Predicting software defects in varying development lifecycles using Bayesian nets’,
Information and Software Technology, Vol. 49, No. 1, pp. 32-43.

Goel, A.L. and Okumoto, K. (1981), ‘When to stop testing and start using software?’, ACM
SIGMETRICS Performance Evaluation Review, Vol. 10, No. 1, pp. 131-138.

Gokhale, S.S., Lyu, M.R. and Trivedi, K.S. (2006), ‘Incorporating fault debugging activities into
software reliability models: A simulation approach’, IEEE Transactions on Reliability, Vol.
55, No. 2, pp. 281-292.

Greene, J. and Stellman, A. (2005), Applied Software Project Management, O’Reilly Media,
Sebastopol, CA.

Huang, C.-Y. (2005), ‘Cost-reliability-optimal release policy for software reliability models
incorporating improvements in testing efficiency’, Journal of Systems and Software, Vol.
77, No. 2, pp. 139-155.

Huang, C.-Y. and Lin, C.T. (2006), ‘Software reliability analysis by considering fault
dependency and debugging time lag’, IEEE Transactions on Reliability, Vol. 55, No. 3, pp.
436-450.

Huang, C.-Y. and Lyu, M.R. (2005), ‘Optimal release time for software systems considering
cost, testing-effort and test efficiency’, IEEE Transactions on Reliability, Vol. 54, No. 4,
pp. 583-591.

Huang, L.G. and Boehm, B. (2006), ‘How much software quality investment is enough: a value-
based approach’, IEEE Software, Vol. 23, No. 5, pp. 88-95.

Hughes, B. and Cotterell, M. (2002), Software Project Management, McGraw-Hill, London,
UK.

International Function Point Users Group (1994a), International Function Point Users Group,
available at http://www.ifpug.org/ (accessed 5 November 2012).

International Function Point Users Group (1994b), Function Point Counting Practices
Manual, Release 4.1.1, available at http://perun.pmf.uns.ac.rs/old/repository/research/se/
functionpoints.pdf (accessed 5 November 2012).

Jacobson, I., Griss, M. and Jonsson, P. (1997), Software Reuse: Architecture, Process and
Organization for Business Success, Addison-Wesley, New York, NY.

Logging Service (2012), ‘Short introduction to log4j: Ceki Gülcü, March 2002’, Apache,

Optimal Software Release Policy Approach Using Test Point Analysis and Module Prioritization 47

available at http://logging.apache.org/ (accessed 5 November 2012).

Lyu, M.R. (2007), ‘Software reliability engineering: a roadmap’, Proceedings of 2007 Future of
Software Engineering, Washington, DC, pp. 153-170.

Mathur, A.P. (2008), Foundation of Software Testing, China Machine Press, Zurich.

Musa, J.D. and Ackerman, A.F. (1989), ‘Quantifying software validation: when to stop testing?’,
IEEE Software, Vol. 6, No. 3, pp. 19-27.

Myers, G.J. (1976), Software Reliability Principles and Practices, John Wiley & Sons, New
York, NY.

Pressman, R.S. and Ince, D. (1992), Software Engineering: A Practitioner’s Approach, McGraw-
Hill, New York, NY.

Quah, T.S. (2009), ‘Estimating software readiness using predictive models’, Information
Sciences, Vol. 179, No. 4, pp. 430-445.

Saaty, T. and Vargas, L.L.G. (Eds.) (2001), Models, Methods, Concepts and Applications of the
Analytic Hierarchy Process, Kluwer Academic, Norwell, MA.

Sommerville, I. (2011), Software Engineering, Pearson Higher Education, London, UK.

Srivastava, P.R. (2008), ‘Model for optimizing software testing period using non homogenous
poisson process based on cumulative test case prioritization’, Proceedings of the TENCON
2008 - 2008 IEEE Region 10 Conference, Hyderabad, India, November 19-21, pp. 1-6.

Srivastava, P.R. (2010), ‘Non homogeneous Poisson process model for optimal software testing
using fault tolerance’, MIS Review, Vol.15, No. 2, pp 77-92.

About the authors

Praveen Ranjan Srivastava is working as an Assistant Professor in the Information
Technology and Systems Group at Indian Institute of Management (IIM), Rohtak India.
He is currently doing research in the area of software Engineering and Management
using novel metaheuristic techniques. His research areas are software testing, quality
management; quality attributes ranking, effort management, software release management,
test data generation, agent modeling, expert system, decision science and advanced soft
computing techniques. He has published more than 100 research papers in various leading
international journals and conferences in the area of software engineering and management.
His prime research area is software validation. He is Editor in Chief of International

48 Praveen Ranjan Srivastava, Subrahmanyan Sankaran, Pushkar Pandey

Journal of Software Engineering Application and Technology (IJSEAT), published by
Inderscience. He has received various funds from different agencies like Microsoft, IBM,
Google, DST, CSIR etc. He is also member of Editorial Board of various leading journals.
He has been actively involved in reviewing various research papers submitted in his field
to different leading journals and various international level conferences. Contact him at
praveenrsrivastava@gmail.com.

Subrahmanyan Sankaran has completed his M.E. (Software Systems) in Computer Science
& Information Systems Group, from Birla Institute of Technology and Science, Pilani,
India. His areas of interest are Data Structures and Algorithms, Software Engineering and
Computer Networks. He is presently a Software Engineer at Cypress Semiconductor.

Pushkar Pandey has completed his M.E. (Software Systems) in Computer Science &
Information Systems Group, from Birla Institute of Technology and Science, Pilani, India.
His areas of interest are Software Development, Algorithms and Operating Systems &
Networks.

Optimal Software Release Policy Approach Using Test Point Analysis and Module Prioritization 49

Appendix

Façade Screen

The façade screen provides an interface to the user in a project where he could browse an XML
file that contains the optional and fixed parameters for modules. An organization can have many
projects running and this tool provides a way to analyze the projects and locate test time and
cost as per Module Priority.

Gantt Chart Screen

As the user chooses the XML file with priorities in a project, the Module Prioritization tool
(MPT) calculates the priorities of the modules and displays them in form of a Gantt chart. It
draws the module wise important parameters (optional and fixed) in a tab control and also
calculates the expendability of each module to be shown tab wise for modules. Two Gantt charts
depict the initial time and cost allocation respectively.

“Compute expendability M2” button determines the cost and time we can expend from M2 to
M1. Then this button changes to “Compute Expendable M3” and so on to show how much M3
can give from its share to M1. This process can continue. The “Extend M1” button will allot
the calculated expendable chunks or tranches to M1 module. We can then utilize new time and

50 Praveen Ranjan Srivastava, Subrahmanyan Sankaran, Pushkar Pandey

cost allocation for the testing of module M1 and move to M2 where we can again compute
expendable chunks from M3 and other modules if we are running out of test time for M2. This
process can be done till n-1 modules out of n modules, if we have time and cost allocation left.

