
MIS Review Vol. 20, No. 2, March (2015), pp. 77-104
DOI: 10.6131/MISR.2015.2002.04
© 2015 Department of Management Information Systems, College of Commerce

 National Chengchi University & Airiti Press Inc.

Development of an In-House Grid Testbed Supporting
Scheduling and Execution of Scientific Workflows

Harshadkumar B. Prajapati1, Vipul A. Shah2

1Department of Information Technology, Dharmsinh Desai University, India
2Department of Instrumentation and Control Engineering, Dharmsinh Desai University, India

ABSTRACT:	 Researchers working in Grid workflow scheduling need a real Grid environment
to produce the results of experiments. However, many interested researchers
of academic institutes may not be able to produce experimental results due to
unavailability of a required testbed at their institutes. This article addresses
an important challenge of developing an in-house Grid testbed that supports
workflow scheduling and execution. This article proposes the architectural
design of the in-house testbed and then concisely presents chosen software
tools, their understanding, installation, configuration, and the testing related
to the implementation of the testbed. Furthermore, the article also presents the
methodology of performing experiments on the testbed. The in-house Grid testbed
is implemented using open-source, freely available, and widely used software
components. In addition, the testbed allows to produce a real Grid scenario
of varying bandwidth values by emulating the network characteristics among
the Grid-sites of the testbed. This article addresses testing of all the internal
components of the testbed and their integrations for their proper working. This
article also provides testing and demonstration of workflow scheduling and
execution. We believe that this article can educate novice users about developing
a Grid testbed. The presented Grid testbed can easily be replicated or adapted;
furthermore, the presented deployment of the Grid testbed can guide to researchers
for carrying out real experimentation for their research purposes.

KEYWORDS:	 Grid Testbed, Grid Deployment, Grid Software Integration, Workflow Scheduling,
Workflow Execution.

1. Introduction

Grid computing (Foster & Kesselman, 2003; Foster et al., 2001) enables to execute
performance demanding scientific applications efficiently by exploiting distributed
resources in a collaborative manner. Many research projects, a few examples include
(Blaha et al., 2014; Exon, n.d.; LIGO, n.d.; Montage, n.d.), try to solve their computing
problems by making computation demanding applications composed of reusable batch-
executables. Various systems (Altintas et al., 2004; Deelman et al., 2005; Fahringer et al.,
2005) have been used by such projects to execute computation demanding applications

78 Harshadkumar B. Prajapati, Vipul A. Shah

efficiently. Moreover, the systems that are open-source, freely available, well documented,
and actively updated attract attention of many researchers and users.

A Grid application having data dependencies among its jobs is called workflow
application (Taylor et al., 2007), which can be represented as a Directed Acyclic Graph
(DAG). A workflow scheduler respects the dependencies among the tasks of a workflow
in the prepared output schedule and a workflow executor executes these tasks as per the
arranged order on the chosen resources. The scheduling (Pinedo, 2008) aspect in Grid
computing (Dong & Akl, 2006; Prajapati & Shah, 2014c) is involved in two diffierent
entities: a local resource scheduler and an application scheduler. Workflow scheduling (Yu
et al., 2008), an application scheduling, in Grid is complex and challenging (Deelman et
al., 2005; Wieczorek et al., 2005), as the workflow scheduler has to decide about which
resources will execute which tasks, what will be the order of the tasks, how to respect the
data dependencies, and how to minimize the makespan of the workflow application.

A Grid computing architecture is complex to build and configure, as the Grid
environment is generally implemented by using more than one software and with more
than one physical computing resources. Readers may find how-to guide for installation
and configuration of an individual software from software vendor. However, integrating
various Grid related software is a big challenge for novice users. As a solution to this
problem, in big organizations specialized system administrators are responsible for
building the Grid testbed; however, in small organizations, it may not be the case. Many
researchers working in academic institutes may not have budget to acquire specialized
system administrators. Consequently, such researchers have no option other than deploying
needed environment themselves. Because a Grid computing architecture involves use
of various software in order to develop an environment with desired functionalities, the
beginners need to spend a lot of time in understanding various topics related to Grid
computing. Furthermore, many tools and software are available to solve the same purpose,
which increases the complexity of building a Grid computing architecture.

Three major categories of Grid environment related software are (1) Local
Resource Manager, (2) Grid middleware, and (3) higher level software and services.
However, to perform workflow scheduling of scientific workflows requires integrations
of appropriate software. Building and configuring of a required Grid environment
involves the understanding of various software and their proper configuration. Therefore,
the new researchers, specifically academic researchers, happen to stay away from Grid
computing topic, or instead rely on simulation based approach. Moreover, if researchers
want to embed new functionalities or new algorithms, then they need to take right
decision about various software. Therefore, this article addresses the problem of design
and implementation of the required Grid testbed supporting workflow scheduling and

Development of an In-House Grid Testbed Supporting Scheduling and Execution of Scientific Workflows 79

execution with the minimal physical resources available. The article discusses the
development in a logical way rather than showing the commands that are found in how-to
guides.

Pegasus WMS is a widely used workflow management system for scheduling
of scientific workflows; it is open-source and freely available. Therefore, we choose
it as a WMS and integrate it in the testbed for scheduling and execution of scientific
workflows. However, Pegasus WMS cannot run standalone; Pegasus WMS requires that
Grid infrastructure is available and the infrastructure is exposed to itself in a specific
way. Our testbed is implemented using Globus 5.2.3 (Globus Toolkit, n.d.), Condor 7.8.7
(HTCondor, n.d.), Pegasus WMS 4.1.0 (Pegasus WMS, n.d.), Network Time Protocol,
and Dummynet (Dummynet, n.d.). The Globus software is used as a Grid middleware and
Condor is used to implement Local Resource Manager. Moreover, Condor-g component
of Condor is used for submitting jobs to the Grid-sites, and DAGMan of Condor is used to
execute the concrete workflow that is prepared by Pegasus WMS. Pegasus WMS is used
for workflow planning and workflow monitoring. Dummynet is used to control bandwidth
among the Grid-sites in order to emulate a real network of Grid-sites, say the Grid-sites
present in different countries. NTP is used for synchronizing clocks of Grid-sites.

Our Contributions: To carry out research on workflow scheduling aspect, we
needed a Grid testbed supporting desired functionalities and administrative control.
However, such Grid testbed was not available at our institute. Therefore, we develop a
Grid testbed made of open-source and freely available software components. We attempt
an important research challenge: many researchers interested in workflow scheduling
can not perform experiments on a real Grid due to either unavailability or access of Grid
testbed at their institutes or organizations.

Our major contributions in this article are as follows:

•	 Design a Grid testbed that uses minimal number of resources and still allows the
execution of workflow scheduling.

•	 Discuss constituent software components and their roles in the development of
the Grid testbed.

•	 Present preparation of a real Grid network scenario through network emulation.

•	 Discuss installation, configuration, integration, and testing of various software
in a concise and logical way, rather than showing commands found in how-to
guides, to allow beginners to reproduce a similar testbed.

•	 Demonstrate the applicability of the prepared testbed by scheduling and
executing black-diamond workflow of Pegasus WMS; show the effect of data

80 Harshadkumar B. Prajapati, Vipul A. Shah

communication size on makespan by scheduling and executing two workflows
having the structure of Molecular dynamics code.

The interested researchers can use or replicate the ready-made design architecture
presented in this article for their research purposes. Moreover, all the important details
pertaining to the development of the Grid testbed are concisely discussed to enable its
replication or customization needed by the interested researchers. To summarize, the
article can help to researchers in two significant ways. First, it can help in understanding
overall Grid architecture with roles and responsibilities of various involved software.
Second, it guides to researchers in implementing a real Grid testbed with minimal
hardware resources available with them.

2. Related work and motivations for this work

Some large scale Grid testbeds are available in certain countries, a few examples
include Grid’5000 for users of France, EUROGRID for users of Europe region, and
Open Science Grid for users of United States and few other countries. The work in (Lai
& Yang, 2003) demonstrates building a Grid computing environment on Linux clusters,
an in-house Grid testbed. The mentioned work (Lai & Yang, 2003) uses Globus toolkit
(Foster & Kesselman, 1997) as a Grid middleware and Sun Grid Engine (Gentzsch, 2001)
as a clustering software. Their work demonstrates performance achievement using Grid
infrastructure for parallel applications; however, their work does not focus on workflow
applications and the workflow scheduling aspect. Similarly, the work in Introduction
to Grid Computing with Globus (Ferreira et al., 2003) provides the installation steps
of building a Grid infrastructure using GT 4; however, it does not focus on workflow
scheduling aspect. A recent work in (Sajat et al., 2012) focuses on the implementation
steps of achieving security in Grid through Grid Security Infrastructure (GSI). Specifically,
their work focuses on installation and testing of host certificates and client certificates and
their testing. As compared to (Sajat et al., 2012), our work has wider scope, not just the
security in Grid.

Workflow concept allows reusing data analysis operations to solve higher-level
analysis problems in various domains; for example, the work in (Turner & Lambert, 2014)
addresses use of workflows in social sciences. A Workflow Management System (WMS)
can integrate various operations related to workflow modeling, scheduling, execution, and
result gathering. Various WMSs support either Directed Acyclic Graph based workflow
or Control Flow Graph based workflow or both. Triana (Taylor et al., 2004), GridAnt
(Amin et al., 2004) or Karajan (von Laszewski and Hategan, 2005), UNICORE (Erwin &
Snelling, 2001), Askalon (Fahringer et al., 2005), and ICENI (Furmento et al., 2002) are

Development of an In-House Grid Testbed Supporting Scheduling and Execution of Scientific Workflows 81

Control Flow Graph based WMSs, and DAGMan (Frey, 2002), Taverna (Hull et al., 2006),
GrADS (Berman et al., 2001), GridFlow (Cao et al., 2003), Gridbus (Buyya & Venugopal,
2004) are DAG based WMSs. Most of the mentioned systems are Globus based except
Taverna, GridFlow, and UNICORE. Furthermore, a few systems also support web-
services. However, only a few systems are active in further development of WMSs and
in providing help or support to their users, and Pegasus WMS is one of them. Moreover,
Pegasus WMS is open-source and freely-available. Therefore, we choose Pegasus WMS,
a widely used workflow management system, for performing scheduling of scientific
workflows.

Performing workflow scheduling and execution on a real Grid computing
environment requires that the needed infrastructure is available. Moreover, performing
experiments on a real system takes time and efforts and requires sound understanding of
the system. If researchers require the results of workflow scheduling quickly and there is
no need to develop a real Grid environment, then simulation based workflow scheduling
and execution can become useful. The work in (Pop et al., 2008) provides MONARC
based simulation solution for performing decentralized dynamic resource assignment
for large scale workflow applications. Their work provides fault tolerant dynamic
scheduling, which allows re-scheduling of remaining workflow when some allocated
resources fail. The work in (Simion et al., 2007) proposes ICPDP (Improved Critical
Path using Descendant Prediction) workflow scheduling algorithm. Moreover, their work
adds facility of dependent tasks scheduling in DIOGENES, which was not available in
DIOGENES. Their work implements the proposed algorithm in DIOGENES and compares
its performance with HLFET, ETF, and MCP algorithms based on total scheduling
time, schedule length, and normalized schedule length. SimGrid (Casanova et al., 2008)
framework, which is a versatile framework supporting generic functionalities needed
for simulating parallel and distributed applications, has been used by many researchers
for performing workflow scheduling. Another popular simulation framework is GridSim
(Buyya & Murshed, 2002). A workflow scheduling simulator called WorkflowSim (Chen
& Deelman, 2012) is available for performing simulation of workflow overhead analysis,
job clustering, and job failure analysis in addition to support of optimization of workflow
execution. WorkflowSim mainly focuses on job clustering based workflow scheduling.

The following reasons motivated us to work on the development work presented
in this article. First, we have worked on a simulation based evaluation of workflow
scheduling algorithm (Prajapati & Shah, 2013). However, to validate the practical
applicability and to evaluate various workflow scheduling algorithms, a real test
environment is needed. As we did not have a real Grid testbed at our institute, we
needed to develop a small, representative testbed to experiment with various workflow
scheduling algorithms. Second, it is possible to get deployed the needed Grid testbed by

82 Harshadkumar B. Prajapati, Vipul A. Shah

acquiring specialized system administrators; however, for an academic institute it is not
a viable solution. Third, we felt that researchers who do not have access to a Grid testbed
should not refrain themselves from research in Grid computing. Fourth, certain research
projects (European Grid Infrastructure, n.d.; FutureSystems, n.d.; Pordes et al., 2007;
SHIWA, n.d.) provide access to their Grid testbeds freely; however, the access is country
specific due to their own limitations and policies. Finally, the most important one, though
somehow researchers get access to an external Grid testbed, they do not get any freedom
of changing any part of any component of the testbed, e.g., changing workflow scheduling
algorithm. To evaluate a new algorithm, researchers require to do changes in the system,
which is possible only if they own or get control of the testbed.

3. Architecture of the testbed and constituent components

Figure 1 shows a generalized architecture of Grid computing environment with focus
on LRMs and connecting them using Grid computing mechanism. A Grid computing
environment involves various Grid-sites, generally one organization is considered as one
Grid-site. Each organization generally contains a batch-queue controlled cluster, which is
exposed to external organizations through Grid computing services and protocols. Each
Grid-site contains a Head node, which is accessible through network, generally Internet.

We attempt to implement this Grid computing architecture, shown in Figure 1,
consisting of four Grid-sites using four machines, in which each machine represents one
Grid-site. The architectural diagram of a Grid testbed supporting workflow scheduling
is presented in Figure 2. In a real Grid system, each Grid-site generally involves many
computing nodes, as shown in Figure 1. However, we use only one computing node under
each Grid-site in our testbed to build the required computing infrastructure with minimal
resources. Moreover, a real Grid computing architecture can involve Grid-sites of various
countries. Therefore, to have such real network scenario in the prepared Grid testbed, we
emulate the bandwidth and latency characteristics of network using dummynet (Carbone
& Rizzo, 2010).

Next, we describe each component that we use in our testbed in brief.

3.1 Dummynet as a network emulator

Dummynet (Carbone & Rizzo, 2010) is a link emulator, which supports emulating
configurable network environments. It is a kernel level bandwidth shaper, which can
work without modifying an existing OS. It is easy to use, as once it is installed into OS,
it can be configured using ipfw commands. Dummynet can be used to emulate network
topologies also, including the emulation of a router device. Dummynet also supports

Development of an In-House Grid Testbed Supporting Scheduling and Execution of Scientific Workflows 83

packet classification, various queue management policies, and loss generation. Dummynet
has two components: emulation engine, which works at kernel level, and packet classifier
command (ipfw), which instructs the emulation engine. Readers are directed to Section
4.2 for further details.

3.2 HTCondor as an LRM

HTCondor (HTCondor, n.d.), which is formerly known as Condor (Litzkow et al.,
1988), is a set of daemons and commands that enable to implement concept of Cluster
computing (Buyya, 1999). In this article, the words Condor and HTCondor are used to
refer to the same thing. In Condor terminology, the batch queue controlled cluster prepared
using Condor is referred by the word Condor Pool. The interaction with Condor system

Figure 1 An Architectural Diagram Showing Four Grid-Sites, Each
Having Its Own LRM of Computing Nodes under Its Control

84 Harshadkumar B. Prajapati, Vipul A. Shah

for various activities is done through command interface; the internal working of Condor
system involves various daemons: Condor master, Condor startd, Condor collector,
Condor schedd, Condor negotiator, Condor shadow, and Condor starter (Litzkow et al.,
1988). Condor allows job submission, job execution, job monitoring, and input-output
data transfer for batch jobs. In our testbed, we expose HTCondor LRMs to grid users
through Globus middleware.

3.3 Globus toolkit as a grid middleware

To implement Grid computing (Foster & Kesselman, 2003), a Grid middleware
software, which glues different local resources of organization, is needed. We use

Figure 2 Proposed Architectural Diagram of an In-House Grid Testbed
Supporting Workflow Scheduling

Development of an In-House Grid Testbed Supporting Scheduling and Execution of Scientific Workflows 85

Globus toolkit (Foster & Kesselman, 1997), which is a de-facto standard software for
implementing Grid computing, as a Grid middleware. The testbed uses Globus for
following activities.

•	 Grid Security (Certificate based authentication, authorization, and single signon)
and Simple CA certificate authority for signing host and user certificates.

•	 GSI (Certificate) based GridFTP (Allcock et al., 2003) (client and server) for
transferring data (files) on Grid-sites (machines)

•	 GRAM client and GRAM server to allow remote job submission using standard
protocol -- GRAM.

3.4 Globus to LRM adapter

Each Local Resource Manager, e.g., Condor (Litzkow et al., 1988), SGE (Gentzsch,
2001), or PBS (Henderson, 1995), has its own interface of performing various job
management related activities. GRAM (Foster & Kesselman, 2003) is a standard way of
accessing a Globus Grid resource. A GRAM-LRM adapter enables usage of any LRM
using GRAM. The GRAM-LRM adapter translates GRAM messages into LRM specific
messages. Therefore, to access any LRM in a Globus based Grid, the installation of
GRAM-LRM adapter is required. We use Globus to Condor adapter for accessing the
Grid-sites of the testbed, which are running Condor LRMs.

3.5 NTP for time synchronization

Network Time Protocol (NTP) (NTP, n.d.) is used to synchronize the time of a
computer (client or server) to another reliable computer or a reference computer. NTP is a
networking protocol for clock synchronization. NTP uses a hierarchy of clock sources. We
use NTP in our testbed to have the clocks of all the computers in sync. NTP is needed in
the testbed because due to the clock mismatch it is quite possible to send a certificate from
one computer to the another on which the start validity period of the certificate has not yet
come.

3.6 Condor-g and DAGMan as pre-requisites for Pegasus WMS

Condor-g (Frey et al., 2002) provides an ability to access Grid resources in the
Condor way. Therefore, using Condor-g it is possible to use non-Condor Grid resources,
such as PBS, SGE, for execution of the jobs that are submitted to a Condor queue.
Moreover, Condor-g also enables exploiting job management related features of Condor
for the jobs submitted to non-Condor remote Grid resources. Pegasus WMS uses Condor-g
for submitting jobs to remote Grid resources. Condor-g communicates with resources and
transfers files from and to these Grid resources. Condor-g uses GRAM protocol for job

86 Harshadkumar B. Prajapati, Vipul A. Shah

submission to Grid resources and a local Global Access to Secondary Storage (GASS)
(Bester et al., 1999) server for file transfers.

DAGMan (Frey, 2002) is HTCondor technology supporting execution of the jobs
of a DAG on a Condor pool. It can utilize non-Condor Grid resources such as SGE, PBS,
and LSF using Condor-g and can utilize the facility of flocking to get more resources in
the pool. DAGMan submits a DAG job as a Condor job to a Condor scheduler. However,
a data movement from one Grid-site to another Grid-site is not automatically handled
by DAGMan, for which pre-script and post-script need to be associated with the jobs.
DAGMan provides fault tolerance through generating a rescue DAG, which can be
restarted from the failure point without redoing the earlier computed work.

3.7 Pegasus WMS as a workflow management system

Pegasus WMS (Deelman et al., 2005) is a workflow execution and management
software for workflow jobs, which are represented as Directed Acyclic Graph in DAX
format. It manages the dependencies of the jobs of a workflow. Pegasus WMS can allow
use of one or more Grid resources for execution of the jobs of a particular workflow
application. Pegasus WMS uses DAGMan (Frey, 2002) for execution of dependent jobs
and Condor-g for job submission. A separate section is devoted to Pegasus WMS, see
Section 6 for further details.

4. Deployment of the grid testbed:
network configuration and network emulation

The Grid middleware software and other related services/software are available for
Linux OSes. Therefore, we use Ubuntu OS for the machines of the Grid testbed, though
the details presented on the deployment are applicable to other Linux variants with minor
differences in the installation steps or in the OS specific configuration files.

4.1 Network configuration

The testbed includes four personal dual-core computers having Ubuntu 12.04LTS
operating system and a networking switch to make a LAN environment. The configuration
of the host names and the IP addresses is shown in Table 1. For each machine, the
configuration of IP address is done using GUI based Network settings utility available in
Ubuntu. The host name of a machine is configured in the /etc/hostname file and the
mapping of host name to IP address is configured in the /etc/hosts file.

Development of an In-House Grid Testbed Supporting Scheduling and Execution of Scientific Workflows 87

Table 1 The Host Names and IP Addresses of Four Computers Used for
Deployment of the Grid Testbed

Host Name IP Address Fully Qualified Hostname
ca 192.168.31.230 ca.it2.ddu.ac.in
grid-b 192.168.31.203 grid-b.it2.ddu.ac.in
grid-v 192.168.31.231 grid-v.it2.ddu.ac.in
grid-m 192.168.31.232 grid-m.it2.ddu.ac.in

4.2 Network emulation

We use dummynet (Carbone & Rizzo, 2010) to emulate network links. The
dummynet emulator is available in source code form (Dummynet, n.d.); therefore it needs
to be compiled into binary before installation. We used 20120812-ipfw3.tgz file, which
is available on its web-site. We uncompress this file using the tar command, and we build
binary files by running the make command. The installation of dummynet includes placing
the ipfw executable in the /usr/local/sbin directory and the ipfw_mod kernel module
in the directory: /lib/modules/‘uname-r’. We install dummynet on each computer of
the Grid testbed, but we configure each machine with different bandwidth values. Figure 3
shows the additional steps of configuring dummynet in the Grid testbed.

To emulate different bandwidth values among the four machines of the testbed,
we configure each machine with different bandwidth value. The grid-b has 1,024 kbit/
s, grid-v has 512 kbit/s, grid-m has 256 kbit/s, and ca has 128 kbit/s as bandwidth
values. Figure 4 shows how to configure bandwidth control on the grid-b machine
through the install-bandwidth-limiter.sh file, which we create and is not an
available configuration file. The bandwidth control uses two pipes: one for the upload
bandwidth and the second for the download bandwidth. For other machines, the install-
bandwidth-limiter.sh file is similar, except for the value of bandwidth and the source
and the destination IP addresses. The pipe 101 is used to control the bandwidth on the
traffic that travels from the machine itself to the other three machines of the testbed.
Similarly, the pipe 102 is used to control the bandwidth on the traffic that arrives from

Figure 3 Additional Steps of Configuration Dummynet in the Grid Testbed

88 Harshadkumar B. Prajapati, Vipul A. Shah

any other machine of the testbed to the machine itself. When bandwidth control is not
needed, the network emulation can be disabled by running the ipfw -q flush and ipfw
-q pipe flush commands.

5. Deployment of the grid testbed: LRM and grid middleware

5.1 Our common procedure for installation of software on Ubuntu

In Ubuntu OS, software that are maintained by various Ubuntu repositories are
installed on a computer by connecting the computer to Internet and then running sudo
apt-get install command. We first installed, without doing any configuration, all the
required software and their dependencies on one computer using sudo apt-get install.
As part of any software installation on a Ubuntu machine using apt tool, all the needed
.deb files with dependencies are downloaded into the /var/cache/apt/archives
directory. Using these downloaded .deb files, for each software we create the required
package repository and package indexing, i.e., Packages.gz file, using the dpkg-
scanpackages command. Then, we modify the /etc/apt/sources.list file to reflect
the locations of various local repositories created in the earlier step. Next, we update the
package repository using the sudo apt-get update command. Finally, we install a
particular software using the sudo apt-get install <package-name> command,
where <package-name> is the name of the chosen software, as if you are connected to
Internet.

Installation of non-Ubuntu maintained software on Ubuntu OS involves one
additional step of configuring vendor’s repository on the computer. Installation using
either the sudo apt-get install <package-name> command or through searching in
Ubuntu Software Center will not succeed, as such software are not maintained by Ubuntu
repositories. For non-Ubuntu maintained software, the required repository files (*.deb) for
various supported platforms are provided by its software vendor. For configuring the local
repository of a computer, first we need to choose appropriate repository file depending

Figure 4 Content of the Additional File: install-bandwidth-limiter.
sh on the grid-b Machine for Controlling Bandwidth in the Grid Testbed

Development of an In-House Grid Testbed Supporting Scheduling and Execution of Scientific Workflows 89

upon the target platform of the computer, characterized by operating system and hardware
architecture (32 bit or 64 bit); next, we need to download the chosen repository file
to the computer; then, we need to install the repository file using the sudo dpkg -i
<repository-file.deb> command to update the local repository configuration of the
machine.

5.2 Globus installation and configuration

Globus requires Java and Ant as prerequisites. Therefore, we install Java from jdk-
7u9-linux-i586.gz file and Apache Ant from apache-ant-1.8.4-bin.tar.gz file
on all the four machines of the testbed. We present the installation and configuration of
globus components next.

5.2.1 Roles and corresponding machines

In our testbed, the ca machine, which works as a Certificate Authority using
SimpleCA, issues host certificates and user certificates to other machines. The other three
machines: grid-b, grid-v, and grid-m, and ca play roles of Grid nodes. The Grid node
role indicates that a particular machine is a compute node, which allows the execution of a
remotely submitted job.

5.2.2 Installation of globus components on the ca machine

We install the globus-gram5 and globus-gridftp packages as per the procedure
discussed in Section 5.1. Similarly, on CA, i.e., the ca.it2.ddu.ac.in machine, we
install globus-gsi and globus-simple-ca Globus packages. As part of the above
installation on CA, the following steps are done automatically by the installer: (1) install
Grid Security Infrastructure and Simple CA, (2) create the simpleca user automatically,
(3) create the self-signed host-certificate, and (4) the simpleca user gets globus, default
one, as the pass-phrase to sign requests of signing host-certificates and user-certificates.
We create a user with the name gtuser on all the machines, including ca as it also plays
role of a Grid node.

5.2.3 Configuration of grid user on the ca machine

On the ca machine, as the gtuser user we send a request for user certificate using
the grid-cert-request command. The command prompts the requesting user to enter
its name and choose PEM pass-phrase, and generates the following three files: usercert_
request.pem, userkey.pem, and an empty usercert.pem. Then, we send the user
certificate request (usercert_request.pem) file to the simpleca user for signing, which
the simpleca user signs using the grid-ca-sign command and sends the generated file
back to the gtuser user. We as the gtuser user store the received signed certificate file
under its /home/gtuser/.globus directory with the name usercert.pem. The gtuser

90 Harshadkumar B. Prajapati, Vipul A. Shah

user can verify the installation and configuration using the grid-proxy-init -debug
-verify command. Next, we do a mapping from a user certificate to a local Linux user
account by running the grid-mapfile-add-entry command as the root user. Finally,
we verify working of all components by running globus-job-run ca.it2.ddu.ac.in/
jobmanager-fork/bin/hostname -f command as the gtuser user.

5.2.4 Preparing GSI configuration file on CA for distribution

On the ca machine, we as the simpleca user create a .deb file containing GSI
configuration using the grid-ca-package command. The generated .deb file is used to
setup GSI on other (Non-CA) machines which will work as Grid nodes. Other Grid nodes
install GSI configuration using the dpkg command and the generated .deb file.

5.2.5 Installation and configuration on other grid nodes

In this paragraph, we discuss about how we install and configure Globus components
on the remaining Grid nodes, i.e., grid-b, grid-v, and grid-m. We install GRAM and
GridFTP Globus components using the procedure discussed in Section 5.2.2. Next, as
the root user, we install CA certificates and signing policy, using the distribution file
generated by simpleca user on the ca machine in Section 5.2.4, on the grid-b, grid-v,
and grid-m machines. Next, on each machine we generate a request for a host certificate
and get it signed from SimpleCA. This step is similar to getting a signed user certificate,
except that the host certificate request is generated as the user being root user. Next, we
do the configuration of the Grid user on each machine, for which the used procedure is
similar to as discussed in Section 5.2.3.

5.3 Installation and configuration of NTP

We use the grid-b machine as a local NTP server and other machines as NTP
clients to grid-b. After installing NTP on each machine of the testbed, we configure
the /etc/ntp.conf file. We put following configuration line: server 127.127.1.0,
on the grid-b machine in its /etc/ntp.conf file. On the other machines, we put
server 192.168.31.203 as the configuration line in their /etc/ntp.conf files, where
192.168.31.203 is the IP address of the grid-b machine.

5.4 Installation and configuration of condor components

We use Condor 7.8.7 as a LRM. In the testbed, as each machine is to work as a
Grid-site, we install personal Condor on each machine. We install condor using sudo apt-
get install condor command by following the procedure discussed in Section 5.1.
Next, we verify the installation of Condor by submitting a Condor submit file containing a
Vanilla universe job using condor_submit command.

Development of an In-House Grid Testbed Supporting Scheduling and Execution of Scientific Workflows 91

To allow submission and execution of remotely submitted jobs, we install GRAM-
Condor adapter on each Grid-site of the Grid testbed. We install the adapter using sudo
apt-get install globus-gram-job-manager-condor command. For each Grid-
site, we do testing of GRAM-Condor adapter by submitting a GRAM job from any other
machine of the testbed. For example, to test working of GRAM-Condor adapter on the
grid-v machine, we perform following steps: (1) login on grid-b as the gtuser user,
(2) create proxy credentials using grid-proxy-init, and (3) submit a job to grid-v
using globus-job-run.

Pegasus WMS uses the Grid universe for a job to allow its execution and monitoring
on remote Grid-site in the condor way. Condor-g component of HTCondor allows the
Grid universe job to be submitted using condor_submit. The condor-g component
gets automatically installed when HTCondor is installed. Though a Condor job can be
submitted to a remote Condor LRM using globus-job-run, the Pegasus WMS uses
Condor-g for submission of remote jobs to avail facilities of job monitoring and fault
tolerance for the submitted jobs on the submit site in the unified way -- the Condor way.

6. Deployment of the grid testbed: Pegasus WMS and its
configuration for the grid testbed

Pegasus WMS was developed by University of Southern California in collaboration
with the Condor team of University of Wisconsin Madison. Pegasus WMS is maintained
by the Pegasus team. Pegasus WMS is available freely in binary form for different
platforms; moreover, it is open source and it relies on other open source software.
Pegasus WMS is made available for use since 2001. We use Pegasus WMS version 4.1
for preparing the Grid testbed supporting workflow scheduling. In this section, we first
concisely describe Pegasus WMS and then present the configuration that we do in the
Grid testbed to achieve scheduling of scientific workflow application.

6.1 Pegasus WMS as a workflow planner and DAGMan as a workflow executor

Pegasus WMS is a workflow execution and management software for workflow jobs
that are represented as Directed Acyclic Graph. It manages dependencies of jobs. It can
allow use of one or more Grid-sites for execution of the jobs of a workflow application.
Pegasus WMS can use any Grid resource or a Grid-site that can be accessed using GRAM.
Pegasus WMS uses, on the workflow submit site, Condor-g for job submission and
Condor DAGMan for execution of a DAG. Pegasus WMS does planning of the jobs of a
workflow, represented in .dax format, and generates a concrete workflow in form of .dag
file and Condor-g submit files, and passes them to DAGMan for execution.

92 Harshadkumar B. Prajapati, Vipul A. Shah

DAGMan itself cannot decide about which Grid-site runs which jobs, though the site
can utilize any available machine of the cluster once the job is submitted to a particular
Grid-site. DAGMan can not take decision about which Grid-site is best to run a particular
job. Therefore, Pegasus WMS complements DAGMan for supporting scheduling and
execution of the jobs of a workflow on Grid resources. Pegasus WMS chooses appropriate
Grid resources for execution of jobs, which is done by a site-selector algorithm, and
generates codes for file movement, data cleanup, data registration, etc. Moreover, Pegasus
WMS provides the monitoring of a running workflow and also provides the provenance
and performance related information.

6.2 Working of Pegasus WMS

We briey highlight on working of PegasusWMS. Pegasus WMS’s pegasus-plan
command takes an abstract workflow (DAX) as an input and does planning (deciding
which task runs on which Grid-site) of tasks of the workflow based on the information
provided in catalogs. This selection decision is taken by a site-selector algorithm, which
we configure in the property file -- .pegasusrc file in our testbed, of Pegasus WMS. The
pegasus-plan command uses physical locations specified for input files from the replica
catalog. The pegasus-plan command prepares the DAGMan .dag file and Condor job
submit files based on the information provided in the transformation catalog. The prepared
Condor submit files are in fact Condor-G submit files having Grid as Universe. The
pegasus-plan command adds the additional jobs for creating a workflow directory,
transferring intermediate files, registering the final data and intermediate data in replica
catalog, and cleanup activities. Pegasus WMS’s pegasus-run command runs the jobs of
the planned workflow on the chosen Grid-sites. The pegasus-run command itself does
not run the jobs of the workflow, rather Pegasus WMS relies on DAGMan, which is a
workflow executor for Pegasus WMS.

When a workflow is started using the pegasus-run command, the command starts
the monitoring daemon (pegasus-monitord) in the directory (called workflow directory
and is created by pegasus-plan) containing the condor submit files. The pegasus-
monitord daemon parses the condor output files and updates the status of the workflow
to a database and to the jobstate.log text file.

6.3 Installation and configuration of Pegasus WMS in the grid testbed

6.3.1 Installation of Pegasus WMS

As the root user, we install Pegasus WMS on the machines, which are having 32-bit
Ubuntu OS, using pegasus 4.1.0-2 i386.deb file, which we generated from .rpm file
using alien tool, as .deb file for 32-bit, Intel architecture was not available. As discussed
earlier, we use the four Grid nodes as four Grid-sites. We assign the names of these sites

Development of an In-House Grid Testbed Supporting Scheduling and Execution of Scientific Workflows 93

as ddu_grid-b, ddu_grid-v, ddu_grid-m, and ddu_ca, and configure these names in the Site
Catalog. All these four Grid-sites play role of an Executor and ddu_grid-b plays role of a
Submit and an Output site, in addition to Executor.

6.3.2 Configuration of directory structure and files

The Pegasus WMS needs a scratch directory and a storage directory on each
Gridsite. The pegasus-plan creates create dir jobs, one per Grid-site, which will create
a workflow directory under scratch directory on each Grid-site that will run jobs of the
workflow. The storage directory is used to hold output data of workflows. We create
/scratch as a scratch directory and /storage as a storage directory, both having
all permissions, on each Grid-site of the testbed. We configure the locations of these
directories in Site Catalog.

We configure Pegasus WMS for the gtuser user on the submit Grid-site, as we
have configured the gtuser user as the user of the Grid testbed. Under the home
directory of the gtuser user, i.e., /home/gtuser, we create the .pegasusrc file
containing initialization of various properties. The .pegasusrc property file contains the
configuration of locations of Replica Catalog, Site Catalog, and Transformation Catalog.
Furthermore, we also specify the pegasus.selector.site property indicating which
site-selector algorithm is used for mapping the jobs of a workflow in this file.

Figure 5 shows the directory structure used for keeping the configuration files,
the input files to Pegasus WMS, and the output files generated by Pegasus WMS. The
rc.data file under the directory /home/gtuser/pegasus-wms/config is a text based
Replica Catalog. The sites.xml3 file under /home/gtuser/pegasu-s-wms/config
is an XML based Site Catalog. The tc.data.text file under /home/gtuser/pegasus-
wms/config is a text based Transformation Catalog. The /home/gtuser/pegasus-
wms/local-scratch is the directory to hold temporary files created for the local site and
the directory /home/gtuser/pegasus-wms/local-storage is used to store data files.
When we use the pegasus-plan command to do planning of an abstract workflow, we
make the /home/gtuser/pegasus-wms/ directory as the current working directory so
that the paths to the .dax file and the workflow run directory can be specified relative to
this directory. The /home/gtuser/pegasus-wms/dax directory is used to keep abstract
workflow files in DAX (XML) format. The workflow-run directory is used, specified
using --dir option to pegasus-plan, by the pegasus-plan to store generated submit
files produced by planning of the workflow. The pegasus-plan creates a separate
directory for each planning done by it under workflow-run directory, which pegasus-
run uses for executing the planned concrete workflow. The input-data directory is used
to hold data files of workflows, whose locations are specified in Replica Catalog.

94 Harshadkumar B. Prajapati, Vipul A. Shah

7. Testing and use of the testbed

7.1 Methodology of experimentations

Figure 6 shows the steps of the methodology used to carry out experiments on
the Grid testbed supporting workflow scheduling, which includes four major phases of
performing experimentation. These phases in sequence are as follows: (1) experiment
configuration, (2) workflow planning, (3) workflow execution, and (4) result generation.
During experiment configuration in Pegasus WMS, the steps of computations of a
scientific workflow are specified as an abstract workflow in DAX, an XML file. Next,
site catalog, transformation catalog, and replica catalog are set up. Next, the site-selector
algorithm is chosen by assigning appropriate name of siteselector class, i.e., workflow
scheduling algorithm, to the pegasus.selector.site property in .pegasusrc file. The
next two steps are related to planning of a workflow.

Once the concrete workflow is generated at the end of workflow planning, the
execution and monitoring of the workflow can be started. For workflow execution, first,
the Grid user, in our testbed the gtuser user, needs to create proxy credentials to allow
access of Grid resources to the jobs submitted by pegasus-run on behalf of the user.
Next, the pegasus-run command is executed to start execution of the jobs of the planned
workflow on the Grid-sites. The execution of the workflow can be monitored by running
the pegasus-status command under control of watch command. An optional step of
using pegasus-analyzer, which is not shown in the diagram, can be used to debug a
failed workflow. If the execution of the workflow is completed, various plots are generated
using the pegasus-plots command and statistics of the workflow run is collected using
the pegasus-statistics command.

7.2 Testing of various components and workflow scheduling and execution

The complete testing of the whole testbed includes testing of many constituent

Figure 5 Directory Structure Used on Submit-Site (ddu_grid-b) for
Configuration of Pegasus WMS

Development of an In-House Grid Testbed Supporting Scheduling and Execution of Scientific Workflows 95

components and their functionalities. We list out various testings that we carried out for
our testbed. Then, we provide testing of workflow scheduling and workflow execution.
The work in (Prajapati & Shah, 2014b) addresses remote job submission to LRM using
Grid computing mechanisms. We have performed following testings on each Grid-site to
test working of various components.

•	 Testing of GSI for proxy credential generation using grid-proxy-init and
grid-proxy-info

•	 Testing of Condor LRM for job execution using condor_submit and monitoring
using condor_q

•	 Testing of gridftp using globus-url-copy for for file transfer

•	 Testing of fork job manager using globus-job-run

•	 Testing of Condor job manager (Globus-Condor adapter) for job execution using
globus-job-run

•	 Testing of Condor-g for remote job submission using condor_submit and
Universe=Globus in condor submit file

We perform testing of Pegasus WMS by scheduling and running the blackdiamond
workflow on the four Grid-sites: ddu_grid-b, ddu_grid-v, ddu_grid-m, and ddu_ca.
We create the concrete workflow for RoundRobin site-selector algorithm using pegasus-
plan by passing the four Grid-sites to --sites option. If the planning is successful,

Figure 6 Methodology for Performing Experiments Using the Grid
Testbed and Pegasus WMS. The Step in Dotted Line Can Be Performed
after Pegasus-Plan, but before Pegasus-Run

96 Harshadkumar B. Prajapati, Vipul A. Shah

pegasus-plan will concretize the workflow and will create a unique directory, for which
time-stamp value is used as the name of the directory, containing job submit files and
DAGMan submit file. To start execution of the planned workflow, we run the workflow
using the pegasus-run command. While the workflow is executing, we can see status of
executing workflow using pegasus-status. To check status of activities the four Grid-
sites are doing for black diamond workflow at particular instant of time, we log on to three
other machines (grid-v, grid-m, and ca) using ssh from the grid-b machine.

Next, we generate various charts using the pegasus-plots command. The
pegasus-plots command will generate various plots under the plots sub-directory under
the workflow run-directory. Figure 7 shows Gantt chart showing the assignment of the
workflow jobs on the four Grid-sites using RoundRobin site-selector algorithm.

7.3 Workflow scheduling and execution of molecular dynamics code workflow

Using the way of creating the black-diamond workflow, we prepare two workflows
of 41 tasks based on the structure of the task-graph of Molecular dynamics code, which is
available in (Topcuouglu et al., 2002). For both the test workflows, we choose the runtime
of each task randomly in the range 243 ~ 357 seconds. For both the workflows, the
cumulative runtime of all the tasks is 12,219 seconds and the average runtime is 298.02
seconds. However, we keep different amount of data communication among the tasks of
these two test workflows to observe their effect on makespan. For the first test workflow,
the amount of data communication between two tasks is chosen randomly in the range
9,879,000 ~ 15,698,940 Bytes; the Communication to Computation Ratio (CCR) for this
workflow is CCR ≈ 0.65. For the second test workflow, the amount of data communication
between each pair of tasks is small, specifically, it is in the range 987,900 ~ 1,569,894

Figure 7 Host over Time Chart for Black-Diamond Workflow Using
RoundRobin Site-Selector Algorithm

Development of an In-House Grid Testbed Supporting Scheduling and Execution of Scientific Workflows 97

Bytes. Thus, the CCR for the second workflow is CCR ≈ 0.065. We schedule and execute
both the test workflows using Random site-selector algorithm in the similar way, as
discussed earlier. For the first test workflow, the makespan of 23,261 seconds is observed.
However, for the second test workflow, having small data communication, the makespan
of 6,308 seconds is observed. Figure 8 shows the Gantt chart showing the assignment of
the jobs of the second test workflow on the four Grid-sites using Random site-selector
algorithm. From the experimental results, we can understand that by increasing the amount
of data communication among the workflow tasks, the makespan of workflow execution
increases due to relatively higher time spent in data communication. Thus, the prepared
testbed can allow experimentation of workflow scheduling and execution on a real Grid
environment.

This testbed was used in (Prajapati & Shah, 2014a) for performing bandwidth-aware
workflow scheduling of scientific workflow.

7.4 Scalability and failure handling in the testbed

Two important problems: scalability of a testbed and failure of resources in the
testbed can affect to workflow scheduling and execution. In our testbed, we have added
a single node under each Grid site, as show in Figure 2, for demonstration purpose;
however, it is possible to add many nodes under each Grid site to make the testbed more
scalable. Workflow scheduling time depends on the number of Gridsites, not on the
number of computing nodes. Therefore adding computing nodes under a Grid-site will
not affect to workflow scheduling time. Moreover, adding Grid-sites will affect workflow
scheduling time polynomially depending upon the workflow scheduling algorithm. Failure

Figure 8 Host over Time Chart for Molecular Dynamics Code Workflow
Having Small Data Communication Using Random Site-Selector Algorithm

98 Harshadkumar B. Prajapati, Vipul A. Shah

of resources can happen at two levels: (1) failure of a computing node and (2) failure of a
Grid-site. The failure of a computing node does not affect to workflow execution, as the
failed job can be handled by the LRM by restarting it on some other available computing
node under its control. However, failure of a Grid-site can affect to workflow execution
depending upon how the used WMS deal with the Grid-site failure. In case of Pegasus
WMS, the failure of a job is detected by the monitoring daemon (pegasus-monitord).
The user can debug the failed workflow execution using pegasus-analyzer, which
provides information related to the failure.

8. Conclusion

Our work designed and developed an in-house Grid testbed using widely used open-
source software packages/tools, including Globus toolkit 5.2.3, HTCondor 7.8.7, NTP,
and Pegasus WMS 4.1.0, to experiment workflow scheduling and execution. Furthermore,
the testbed emulated a real Grid scenario of bandwidth variation among various Grid-
sites using dummynet. Building a Grid environment requires the understanding of the
concepts related to network, protocols, services, etc. However, due to proper study and
experimentation with individual software components, we are able to produce a usable
Grid testbed, having minimal physical resources, for carrying workflow scheduling and
execution. Furthermore, through the experimental work, we are able to provide concise
understanding of various involved software, their installation, their configuration, and
their testing.

Our testbed has only four computing machines, in which each machine works as a
Grid-site as well as a computing node. It is possible to add additional computing nodes
in each Grid-site. The added computing machines need to become part of the batch-
queue cluster that is under control of a particular Grid-site. For example, in our testbed
we need to install Condor on each additional computing machine and we need to make
each added computing machine to respond to the central manager of a particular Grid-site.
Thus, the presented Grid testbed can easily be replicated or adapted, as the work concisely
included all important details pertaining to the development and the deployment of the
Grid architecture supporting workflow scheduling. Moreover, we can easily include a
large number of computing nodes under each Grid-site to achieve better reliability. There
are other WMSs, e.g., Askalon (Fahringer et al., 2005), Kepler (Altintas et al., 2004), and
Karajan (von Laszewski & Hategan, 2005), for which similar deployment and testing of a
Grid testbed can provide substantial help to novice researchers.

Development of an In-House Grid Testbed Supporting Scheduling and Execution of Scientific Workflows 99

Acknowledgements

The authors would like to thank the Pegasus WMS team for providing answers of
various questions related to deployment of Pegasus WMS. The answers of raised questions
have helped a lot to the authors in quickly digesting the internal working of Pegasus WMS.

References

Allcock, W., Bester, J., Bresnahan, J., Chervenak, A., Liming, L. and Tuecke, S. (2003),
‘GridFTP: protocol extensions to FTP for the grid’, GFD-RP 20, Global Grid Forum,
Muncie, IN.

Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B. and Mock, S. (2004), ‘Kepler: an
extensible system for design and execution of scientific workflows’, Proceedings of 16th
International Conference on Scientific and Statistical Database Management, Santorini
Island, Greece, pp. 423-424.

Amin, K., Von Laszewski, G., Hategan, M., Zaluzec, N.J., Hampton, S. and Rossi, A. (2004),
‘Gridant: a client-controllable grid workflow system’, Proceedings of the 37th Annual
Hawaii International Conference on System Sciences, Big Island, HI, doi: 10.1109/
HICSS.2004.1265491.

Berman, F., Chien, A., Cooper, K., Dongarra, J., Foster, I., Gannon, D., et al. (2001), ‘The grads
project: Software support for high-level grid application development’, International
Journal of High Performance Computing Applications, Vol. 15, No. 4, pp. 327-344.

Bester, J., Foster, I., Kesselman, C., Tedesco, J. and Tuecke, S. (1999), ‘Gass: a data movement
and access service for wide area computing systems’, Proceedings of the Sixth Workshop
on I/O in Parallel and Distributed Systems, Atlanta, GA, pp. 78-88.

Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D. and Luitz, J. (2014), Wien2k. An Augmented
Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna
University of Technology, Vienna, Austria.

Buyya, R. (1999), High Performance Cluster Computing: Architectures and Systems, Volume 1,
Prentice Hall, Upper Saddle River, NJ.

Buyya, R. and Murshed, M. (2002), ‘Gridsim: a toolkit for the modeling and simulation of
distributed resource management and scheduling for grid computing’, Concurrency and
Computation: Practice and Experience, Vol. 14, No. 13-15, pp. 1175-1220.

100 Harshadkumar B. Prajapati, Vipul A. Shah

Buyya, R. and Venugopal, S. (2004), ‘The Gridbus toolkit for service oriented grid and utility
computing: an overview and status report’, Proceedings of 1st IEEE International
Workshop on Grid Economics and Business Models, Seoul, Korea, pp. 19-66.

Cao, J., Jarvis, S.A., Saini, S. and Nudd, G.R. (2003), ‘GridFlow: workflow management for
grid computing’, Proceedings of 3rd IEEE/ACM International Symposium on Cluster
Computing and the Grid, Tokyo, Japan, pp. 198-205.

Carbone, M. and Rizzo, L. (2010), ‘Dummynet revisited’, ACM SIGCOMM Computer
Communication Review, Vol. 40, No. 2, pp. 12-20.

Casanova, H., Legrand, A. and Quinson, M. (2008), ‘Simgrid: a generic framework for large-
scale distributed experiments’, Proceedings of Tenth International Conference on Computer
Modeling and Simulation, Cambridge, UK, pp. 126-131.

Chen, W. and Deelman, E. (2012), ‘WorkflowSim: a toolkit for simulating scientific workflows
in distributed environments’, Proceedings of 2012 IEEE 8th International Conference on
E-Science (e-Science), Chicago, IL, pp. 1-8.

Deelman, E., Singh, G., Su, M.H., Blythe, J., Gil, Y., Kesselman, C., et al. (2005), ‘Pegasus: a
framework for mapping complex scientific workflows onto distributed systems’, Scientific
Programming, Vol. 13, No. 3, pp. 219-237.

Dong, F. and Akl, S. G. (2006), ‘Scheduling algorithms for grid computing: state of the art
and open problems’, Technical Report No. 2006-504, School of Computing, Queen’s
University, Kingston, Canada.

Dummynet. (n.d.), ‘The dummynet project’, available at http://info.iet.unipi.it/~luigi/dummynet/
(accessed 10 February 2015).

Erwin, D.W. and Snelling, D.F. (2001), ‘UNICORE: a grid computing environment’,
Proceedings of Euro-Par 2001, Manchester, UK, pp. 825-834.

European Grid Infrastructure. (n.d.), ‘European Grid Infrastructure’, available at http://www.egi.
eu/ (accessed 10 February 2015).

Exon. (n.d.), ‘Blast workflow’, available at http://exon.niaid.nih.gov/cas/manual/blast-workflow.
html (accessed 10 February 2015).

Fahringer, T., Jugravu, A., Pllana, S., Prodan, R., Seragiotto, C. and Truong, H.L. (2005),
‘Askalon: a tool set for cluster and grid computing’, Concurrency and Computation:
Practice and Experience, Vol. 17, No. 2-4, pp. 143-169.

Ferreira, L., Berstis, V., Armstrong, J., Kendzierski, M., Neukoetter, A., Takagi, M., et al. (2003),
Introduction to Grid Computing with Globus, IBM, New York, NY.

Development of an In-House Grid Testbed Supporting Scheduling and Execution of Scientific Workflows 101

Foster, I. and Kesselman, C. (1997), ‘Globus: a metacomputing infrastructure toolkit’,
International Journal of High Performance Computing Applications, Vol. 11, No. 2, pp.
115-128.

Foster, I. and Kesselman, C. (Eds.). (2003), The Grid: Blueprint for a New Computing
Infrastructure, 2nd ed., Elsevier, Oxford, UK.

Foster, I., Kesselman, C. and Tuecke, S. (2001), ‘The anatomy of the grid: enabling scalable
virtual organizations’, International Journal of High Performance Computing Applications,
Vol. 15, No. 3, pp. 200-222.

Frey, J. (2002), ‘Condor DAGMan: handling inter-job dependencies’, Technical Report,
Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI.

Frey, J., Tannenbaum, T., Livny, M., Foster, I. and Tuecke, S. (2002), ‘Condor-g: a computation
management agent for multi-institutional grids’, Cluster Computing, Vol. 5, No. 3, pp. 237-
246.

Furmento, N., Lee, W., Mayer, A., Newhouse, S. and Darlington, J. (2002), ‘ICENI: an open grid
service architecture implemented with Jini’, Proceedings of 2002 ACM/IEEE Conference
on Supercomputing, Baltimore, MD, doi: 10.1109/SC.2002.10027.

FutureSystems. (n.d.), ‘FutureGrid is now FutureSystems’, available at https://portal.
futuresystems.org/ (accessed 10 February 2015).

Gentzsch, W. (2001), ‘Sun grid engine: towards creating a compute power grid’, Proceedings of
First IEEE/ACM International Symposium on Cluster Computing and the Grid, Brisbane,
Australia, pp. 35-36.

Globus Toolkit. (n.d.), ‘Installing GT 5.2.3’, available at http://www.globus.org/toolkit/
docs/5.2/5.2.3/admin/install/ (accessed 10 February 2015).

Henderson, R.L. (1995), ‘Job scheduling under the portable batch system’, Proceedings of IPPS
1995, Santa Barbara, CA, pp. 279-294.

HTCondor. (n.d.), ‘Computing with HTCondorTM’, available at http://research.cs.wisc.edu/
htcondor/ (accessed 10 February 2015).

Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M.R., Li, P., et al. (2006), ‘Taverna: a
tool for building and running workflows of services’, Nucleic Acids Research, Vol. 34, pp.
W729-W732.

Lai, C.L. and Yang, C.T. (2003), ‘Construct a grid computing environment on multiple Linux
PC clusters’, Tunghai Science, Vol. 5, pp. 107-124.

102 Harshadkumar B. Prajapati, Vipul A. Shah

LIGO. (n.d.), ‘LIGO laser interferometer gravitational-wave observatory’, available at http://
www.ligo.caltech.edu/ (accessed 10 February 2015).

Litzkow, M.J., Livny, M. and Mutka, M.W. (1988), ‘Condor-a hunter of idle workstations’,
Proceedings of 8th International Conference on Distributed Computing Systems, San Jose,
CA, pp. 104-111.

Montage. (n.d.), ‘Grid tools’, available at http://montage.ipac.caltech.edu/docs/gridtools.html
(accessed 10 February 2015).

NTP. (n.d.), ‘NTP: the network time protocol’, available at http://www.ntp.org/ (accessed 10
February 2015).

Pegasus WMS. (n.d.), ‘Pegasus’, available at http://pegasus.isi.edu/projects/pegasus (accessed
10 February 2015).

Pinedo, M.L. (2008), Scheduling: Theory, Algorithms and Systems, 3rd ed., Springer, New York,
NY.

Pop, F., Dobre, C. and Cristea, V. (2008), ‘Decentralized dynamic resource allocation for
workflows in grid environments’, Proceedings of 10th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing, Timisoara, Romania, pp. 557-
563.

Pordes, R., Petravick, D., Kramer, B., Olson, D., Livny, M., Roy, A., et al. (2007), ‘The
open science grid’, Journal of Physics: Conference Series, Vol. 78, doi: 10.1088/1742-
6596/78/1/012057.

Prajapati, H.B. and Shah, V.A. (2013), ‘Advance reservation based dag application scheduling
simulator for grid environment’, International Journal of Computer Applications, Vol. 61,
No. 7, pp. 45-51.

Prajapati, H.B. and Shah, V.A. (2014a), ‘Bandwidth-aware scheduling of workflow application
on multiple grid sites’, Journal of Computer Networks and Communications, Vol. 2014,
doi: 10.1155/2014/529835.

Prajapati, H.B. and Shah, V.A. (2014b), ‘Experimental study of remote job submission and
execution on LRM through grid computing mechanisms’, Proceedings of 2014 Fourth
International Conference on Advanced Computing & Communication Technologies,
Rohtak, India, pp. 335-341.

Prajapati, H.B. and Shah, V.A. (2014c), ‘Scheduling in grid computing environment’,
Proceedings of 2014 Fourth International Conference on Advanced Computing &
Communication Technologies, Rohtak, India, pp. 315-324.

Development of an In-House Grid Testbed Supporting Scheduling and Execution of Scientific Workflows 103

Sajat, M.S., Hassan, S., Ahmad, A.A., Daud, A.Y. and Ahmad, A. (2012), ‘Implementing a
secure academic grid system -- a Malaysian case’, Proceedings of the 10th Australian
Information Security Management Conference, Perth, Australia, pp. 59-65.

SHIWA. (n.d.), ‘SHaring interoperable workflows for large-scale scientific simulations on
available DCIs’, available at http://www.shiwa-workflow.eu/ (accessed 10 February 2015).

Simion, B., Leordeanu, C., Pop, F. and Cristea, V. (2007), ‘A hybrid algorithm for scheduling
workflow applications in grid environments (ICPDP)’, Proceedings of OTM Confederated
International Conferences CoopIS, DOA, ODBASE, GADA, and IS 2007, Vilamoura,
Portugal, pp. 1331-1348.

Taylor, I., Deelman, E., Gannon, D.B. and Shields, M. (Eds.). (2007), Workflows for e-Science:
Scientific Workflows for Grids, Springer, New York, NY.

Taylor, I., Shields, M. and Wang, I. (2004), ‘Resource management for the Triana peer-to-
peer services’, in Nabrzyski, J., Schopf, J.M. and Węglarz, J. (Eds.), Grid Resource
Management, Springer, New York, NY, pp. 451-462.

Topcuouglu, H., Hariri, S. and Wu, M.-y. (2002), ‘Performance-effective and lowcomplexity
task scheduling for heterogeneous computing’, IEEE Transactions on Parallel and
Distributed Systems, Vol. 13, No. 3, pp. 260-274.

Turner, K.J. and Lambert, P.S. (2014), ‘Workflows for quantitative data analysis in the social
sciences’, International Journal on Software Tools for Technology Transfer, doi: 10.1007/
s10009-014-0315-4.

von Laszewski, G. and Hategan, M. (2005), ‘Workflow concepts of the java cog kit’, Journal of
Grid Computing, Vol. 3, No. 3-4, pp. 239-258.

Wieczorek, M., Prodan, R. and Fahringer, T. (2005), ‘Scheduling of scientific workflows in the
askalon grid environment’, ACM SIGMOD Record, Vol. 34, No. 3, pp. 56-62.

Yu, J., Buyya, R. and Ramamohanarao, K. (2008), ‘Workflow scheduling algorithms for
grid computing’, in Xhafa, F. and Abraham, A. (Eds.), Metaheuristics for Scheduling in
Distributed Computing Environments, Springer, Berlin, Germany, pp. 173-214.

About the authors

Harshadkumar B. Prajapati is an Associate Professor at the Department of Information
Technology, Faculty of Technology, Dharmsinh Desai University, India. He received a BE
in Electronics and Communication from Gujarat University, India, in 2000 and an ME in

104 Harshadkumar B. Prajapati, Vipul A. Shah

Computer Engineering from Dharmsinh Desai University in 2007. He recently completed
PhD in Computer Engineering from Dharmsinh Desai University. He has published
several papers in international conferences and journals. He has served as a reviewer in
international journals and conferences. His research areas include distributed computing,
grid computing, and workflow scheduling.

	 Corresponding author. Department of Information Technology, Dharmsinh Desai
University, Nadiad-387001, Gujarat, India. Tel: +91-268-2520502. E-mail address: harshad.
b.prajapati@gmail.com

Vipul A. Shah is a Professor at the Department of Instrumentation and Control Engineering,
Faculty of Technology, Dharmsinh Desai University, India. He received a BE degree
in Instrumentation and Control Engineering in the year 1991 and an ME degree in
Microprocessor Systems and Applications in the year 1995. He received a PhD in
Instrumentation and Control Engineering from Dharmsinh Desai University in the year
2006. His research areas include Artificial Intelligence, Robotics, Machine Control, System
Design, Advanced Control Theory, Process Control, and Distributed Control. E-mail
address: vashahin2010@gmail.com

