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ABSTRACT:	 Researchers working in Grid workflow scheduling need a real Grid environment 
to produce the results of experiments. However, many interested researchers 
of academic institutes may not be able to produce experimental results due to 
unavailability of a required testbed at their institutes. This article addresses 
an important challenge of developing an in-house Grid testbed that supports 
workflow scheduling and execution. This article proposes the architectural 
design of the in-house testbed and then concisely presents chosen software 
tools, their understanding, installation, configuration, and the testing related 
to the implementation of the testbed. Furthermore, the article also presents the 
methodology of performing experiments on the testbed. The in-house Grid testbed 
is implemented using open-source, freely available, and widely used software 
components. In addition, the testbed allows to produce a real Grid scenario 
of varying bandwidth values by emulating the network characteristics among 
the Grid-sites of the testbed. This article addresses testing of all the internal 
components of the testbed and their integrations for their proper working. This 
article also provides testing and demonstration of workflow scheduling and 
execution. We believe that this article can educate novice users about developing 
a Grid testbed. The presented Grid testbed can easily be replicated or adapted; 
furthermore, the presented deployment of the Grid testbed can guide to researchers 
for carrying out real experimentation for their research purposes. 

KEYWORDS:	 Grid Testbed, Grid Deployment, Grid Software Integration, Workflow Scheduling, 
Workflow Execution.

1. Introduction

Grid computing (Foster & Kesselman, 2003; Foster et al., 2001) enables to execute 
performance demanding scientific applications efficiently by exploiting distributed 
resources in a collaborative manner. Many research projects, a few examples include 
(Blaha et al., 2014; Exon, n.d.; LIGO, n.d.; Montage, n.d.), try to solve their computing 
problems by making computation demanding applications composed of reusable batch-
executables. Various systems (Altintas et al., 2004; Deelman et al., 2005; Fahringer et al., 
2005) have been used by such projects to execute computation demanding applications 
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efficiently. Moreover, the systems that are open-source, freely available, well documented, 
and actively updated attract attention of many researchers and users.

A Grid application having data dependencies among its jobs is called workflow 
application (Taylor et al., 2007), which can be represented as a Directed Acyclic Graph 
(DAG). A workflow scheduler respects the dependencies among the tasks of a workflow 
in the prepared output schedule and a workflow executor executes these tasks as per the 
arranged order on the chosen resources. The scheduling (Pinedo, 2008) aspect in Grid 
computing (Dong & Akl, 2006; Prajapati & Shah, 2014c) is involved in two diffierent 
entities: a local resource scheduler and an application scheduler. Workflow scheduling (Yu 
et al., 2008), an application scheduling, in Grid is complex and challenging (Deelman et 
al., 2005; Wieczorek et al., 2005), as the workflow scheduler has to decide about which 
resources will execute which tasks, what will be the order of the tasks, how to respect the 
data dependencies, and how to minimize the makespan of the workflow application.

A Grid computing architecture is complex to build and configure, as the Grid 
environment is generally implemented by using more than one software and with more 
than one physical computing resources. Readers may find how-to guide for installation 
and configuration of an individual software from software vendor. However, integrating 
various Grid related software is a big challenge for novice users. As a solution to this 
problem, in big organizations specialized system administrators are responsible for 
building the Grid testbed; however, in small organizations, it may not be the case. Many 
researchers working in academic institutes may not have budget to acquire specialized 
system administrators. Consequently, such researchers have no option other than deploying 
needed environment themselves. Because a Grid computing architecture involves use 
of various software in order to develop an environment with desired functionalities, the 
beginners need to spend a lot of time in understanding various topics related to Grid 
computing. Furthermore, many tools and software are available to solve the same purpose, 
which increases the complexity of building a Grid computing architecture.

Three major categories of Grid environment related software are (1) Local 
Resource Manager, (2) Grid middleware, and (3) higher level software and services. 
However, to perform workflow scheduling of scientific workflows requires integrations 
of appropriate software. Building and configuring of a required Grid environment 
involves the understanding of various software and their proper configuration. Therefore, 
the new researchers, specifically academic researchers, happen to stay away from Grid 
computing topic, or instead rely on simulation based approach. Moreover, if researchers 
want to embed new functionalities or new algorithms, then they need to take right 
decision about various software. Therefore, this article addresses the problem of design 
and implementation of the required Grid testbed supporting workflow scheduling and 
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execution with the minimal physical resources available. The article discusses the 
development in a logical way rather than showing the commands that are found in how-to 
guides.

Pegasus WMS is a widely used workflow management system for scheduling 
of scientific workflows; it is open-source and freely available. Therefore, we choose 
it as a WMS and integrate it in the testbed for scheduling and execution of scientific 
workflows. However, Pegasus WMS cannot run standalone; Pegasus WMS requires that 
Grid infrastructure is available and the infrastructure is exposed to itself in a specific 
way. Our testbed is implemented using Globus 5.2.3 (Globus Toolkit, n.d.), Condor 7.8.7 
(HTCondor, n.d.), Pegasus WMS 4.1.0 (Pegasus WMS, n.d.), Network Time Protocol, 
and Dummynet (Dummynet, n.d.). The Globus software is used as a Grid middleware and 
Condor is used to implement Local Resource Manager. Moreover, Condor-g component 
of Condor is used for submitting jobs to the Grid-sites, and DAGMan of Condor is used to 
execute the concrete workflow that is prepared by Pegasus WMS. Pegasus WMS is used 
for workflow planning and workflow monitoring. Dummynet is used to control bandwidth 
among the Grid-sites in order to emulate a real network of Grid-sites, say the Grid-sites 
present in different countries. NTP is used for synchronizing clocks of Grid-sites. 

Our Contributions: To carry out research on workflow scheduling aspect, we 
needed a Grid testbed supporting desired functionalities and administrative control. 
However, such Grid testbed was not available at our institute. Therefore, we develop a 
Grid testbed made of open-source and freely available software components. We attempt 
an important research challenge: many researchers interested in workflow scheduling 
can not perform experiments on a real Grid due to either unavailability or access of Grid 
testbed at their institutes or organizations.

Our major contributions in this article are as follows:

•	 Design a Grid testbed that uses minimal number of resources and still allows the 
execution of workflow scheduling.

•	 Discuss constituent software components and their roles in the development of 
the Grid testbed.

•	 Present preparation of a real Grid network scenario through network emulation.

•	 Discuss installation, configuration, integration, and testing of various software 
in a concise and logical way, rather than showing commands found in how-to 
guides, to allow beginners to reproduce a similar testbed.

•	 Demonstrate the applicability of the prepared testbed by scheduling and 
executing black-diamond workflow of Pegasus WMS; show the effect of data 
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communication size on makespan by scheduling and executing two workflows 
having the structure of Molecular dynamics code.

The interested researchers can use or replicate the ready-made design architecture 
presented in this article for their research purposes. Moreover, all the important details 
pertaining to the development of the Grid testbed are concisely discussed to enable its 
replication or customization needed by the interested researchers. To summarize, the 
article can help to researchers in two significant ways. First, it can help in understanding 
overall Grid architecture with roles and responsibilities of various involved software. 
Second, it guides to researchers in implementing a real Grid testbed with minimal 
hardware resources available with them.

2. Related work and motivations for this work

Some large scale Grid testbeds are available in certain countries, a few examples 
include Grid’5000 for users of France, EUROGRID for users of Europe region, and 
Open Science Grid for users of United States and few other countries. The work in (Lai 
& Yang, 2003) demonstrates building a Grid computing environment on Linux clusters, 
an in-house Grid testbed. The mentioned work (Lai & Yang, 2003) uses Globus toolkit 
(Foster & Kesselman, 1997) as a Grid middleware and Sun Grid Engine (Gentzsch, 2001) 
as a clustering software. Their work demonstrates performance achievement using Grid 
infrastructure for parallel applications; however, their work does not focus on workflow 
applications and the workflow scheduling aspect. Similarly, the work in Introduction 
to Grid Computing with Globus (Ferreira et al., 2003) provides the installation steps 
of building a Grid infrastructure using GT 4; however, it does not focus on workflow 
scheduling aspect. A recent work in (Sajat et al., 2012) focuses on the implementation 
steps of achieving security in Grid through Grid Security Infrastructure (GSI). Specifically, 
their work focuses on installation and testing of host certificates and client certificates and 
their testing. As compared to (Sajat et al., 2012), our work has wider scope, not just the 
security in Grid.

Workflow concept allows reusing data analysis operations to solve higher-level 
analysis problems in various domains; for example, the work in (Turner & Lambert, 2014) 
addresses use of workflows in social sciences. A Workflow Management System (WMS) 
can integrate various operations related to workflow modeling, scheduling, execution, and 
result gathering. Various WMSs support either Directed Acyclic Graph based workflow 
or Control Flow Graph based workflow or both. Triana (Taylor et al., 2004), GridAnt 
(Amin et al., 2004) or Karajan (von Laszewski and Hategan, 2005), UNICORE (Erwin & 
Snelling, 2001), Askalon (Fahringer et al., 2005), and ICENI (Furmento et al., 2002) are 
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Control Flow Graph based WMSs, and DAGMan (Frey, 2002), Taverna (Hull et al., 2006), 
GrADS (Berman et al., 2001), GridFlow (Cao et al., 2003), Gridbus (Buyya & Venugopal, 
2004) are DAG based WMSs. Most of the mentioned systems are Globus based except 
Taverna, GridFlow, and UNICORE. Furthermore, a few systems also support web-
services. However, only a few systems are active in further development of WMSs and 
in providing help or support to their users, and Pegasus WMS is one of them. Moreover, 
Pegasus WMS is open-source and freely-available. Therefore, we choose Pegasus WMS, 
a widely used workflow management system, for performing scheduling of scientific 
workflows.

Performing workflow scheduling and execution on a real Grid computing 
environment requires that the needed infrastructure is available. Moreover, performing 
experiments on a real system takes time and efforts and requires sound understanding of 
the system. If researchers require the results of workflow scheduling quickly and there is 
no need to develop a real Grid environment, then simulation based workflow scheduling 
and execution can become useful. The work in (Pop et al., 2008) provides MONARC 
based simulation solution for performing decentralized dynamic resource assignment 
for large scale workflow applications. Their work provides fault tolerant dynamic 
scheduling, which allows re-scheduling of remaining workflow when some allocated 
resources fail. The work in (Simion et al., 2007) proposes ICPDP (Improved Critical 
Path using Descendant Prediction) workflow scheduling algorithm. Moreover, their work 
adds facility of dependent tasks scheduling in DIOGENES, which was not available in 
DIOGENES. Their work implements the proposed algorithm in DIOGENES and compares 
its performance with HLFET, ETF, and MCP algorithms based on total scheduling 
time, schedule length, and normalized schedule length. SimGrid (Casanova et al., 2008) 
framework, which is a versatile framework supporting generic functionalities needed 
for simulating parallel and distributed applications, has been used by many researchers 
for performing workflow scheduling. Another popular simulation framework is GridSim 
(Buyya & Murshed, 2002). A workflow scheduling simulator called WorkflowSim (Chen 
& Deelman, 2012) is available for performing simulation of workflow overhead analysis, 
job clustering, and job failure analysis in addition to support of optimization of workflow 
execution. WorkflowSim mainly focuses on job clustering based workflow scheduling.

The following reasons motivated us to work on the development work presented 
in this article. First, we have worked on a simulation based evaluation of workflow 
scheduling algorithm (Prajapati & Shah, 2013). However, to validate the practical 
applicability and to evaluate various workflow scheduling algorithms, a real test 
environment is needed. As we did not have a real Grid testbed at our institute, we 
needed to develop a small, representative testbed to experiment with various workflow 
scheduling algorithms. Second, it is possible to get deployed the needed Grid testbed by 
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acquiring specialized system administrators; however, for an academic institute it is not 
a viable solution. Third, we felt that researchers who do not have access to a Grid testbed 
should not refrain themselves from research in Grid computing. Fourth, certain research 
projects (European Grid Infrastructure, n.d.; FutureSystems, n.d.; Pordes et al., 2007; 
SHIWA, n.d.) provide access to their Grid testbeds freely; however, the access is country 
specific due to their own limitations and policies. Finally, the most important one, though 
somehow researchers get access to an external Grid testbed, they do not get any freedom 
of changing any part of any component of the testbed, e.g., changing workflow scheduling 
algorithm. To evaluate a new algorithm, researchers require to do changes in the system, 
which is possible only if they own or get control of the testbed.

3. Architecture of the testbed and constituent components

Figure 1 shows a generalized architecture of Grid computing environment with focus 
on LRMs and connecting them using Grid computing mechanism. A Grid computing 
environment involves various Grid-sites, generally one organization is considered as one 
Grid-site. Each organization generally contains a batch-queue controlled cluster, which is 
exposed to external organizations through Grid computing services and protocols. Each 
Grid-site contains a Head node, which is accessible through network, generally Internet. 

We attempt to implement this Grid computing architecture, shown in Figure 1, 
consisting of four Grid-sites using four machines, in which each machine represents one 
Grid-site. The architectural diagram of a Grid testbed supporting workflow scheduling 
is presented in Figure 2. In a real Grid system, each Grid-site generally involves many 
computing nodes, as shown in Figure 1. However, we use only one computing node under 
each Grid-site in our testbed to build the required computing infrastructure with minimal 
resources. Moreover, a real Grid computing architecture can involve Grid-sites of various 
countries. Therefore, to have such real network scenario in the prepared Grid testbed, we 
emulate the bandwidth and latency characteristics of network using dummynet (Carbone 
& Rizzo, 2010).

Next, we describe each component that we use in our testbed in brief.

3.1 Dummynet as a network emulator

Dummynet (Carbone & Rizzo, 2010) is a link emulator, which supports emulating 
configurable network environments. It is a kernel level bandwidth shaper, which can 
work without modifying an existing OS. It is easy to use, as once it is installed into OS, 
it can be configured using ipfw commands. Dummynet can be used to emulate network 
topologies also, including the emulation of a router device. Dummynet also supports 
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packet classification, various queue management policies, and loss generation. Dummynet 
has two components: emulation engine, which works at kernel level, and packet classifier 
command (ipfw), which instructs the emulation engine. Readers are directed to Section 
4.2 for further details.

3.2 HTCondor as an LRM

HTCondor (HTCondor, n.d.), which is formerly known as Condor (Litzkow et al., 
1988), is a set of daemons and commands that enable to implement concept of Cluster 
computing (Buyya, 1999). In this article, the words Condor and HTCondor are used to 
refer to the same thing. In Condor terminology, the batch queue controlled cluster prepared 
using Condor is referred by the word Condor Pool. The interaction with Condor system 

Figure 1   An Architectural Diagram Showing Four Grid-Sites, Each 
Having Its Own LRM of Computing Nodes under Its Control



84    Harshadkumar B. Prajapati, Vipul A. Shah

for various activities is done through command interface; the internal working of Condor 
system involves various daemons: Condor master, Condor startd, Condor collector, 
Condor schedd, Condor negotiator, Condor shadow, and Condor starter (Litzkow et al., 
1988). Condor allows job submission, job execution, job monitoring, and input-output 
data transfer for batch jobs. In our testbed, we expose HTCondor LRMs to grid users 
through Globus middleware.

3.3 Globus toolkit as a grid middleware

To implement Grid computing (Foster & Kesselman, 2003), a Grid middleware 
software, which glues different local resources of organization, is needed. We use 

Figure 2   Proposed Architectural Diagram of an In-House Grid Testbed 
Supporting Workflow Scheduling
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Globus toolkit (Foster & Kesselman, 1997), which is a de-facto standard software for 
implementing Grid computing, as a Grid middleware. The testbed uses Globus for 
following activities.

•	 Grid Security (Certificate based authentication, authorization, and single signon) 
and Simple CA certificate authority for signing host and user certificates.

•	 GSI (Certificate) based GridFTP (Allcock et al., 2003) (client and server) for 
transferring data (files) on Grid-sites (machines)

•	 GRAM client and GRAM server to allow remote job submission using standard 
protocol -- GRAM.

3.4 Globus to LRM adapter

Each Local Resource Manager, e.g., Condor (Litzkow et al., 1988), SGE (Gentzsch, 
2001), or PBS (Henderson, 1995), has its own interface of performing various job 
management related activities. GRAM (Foster & Kesselman, 2003) is a standard way of 
accessing a Globus Grid resource. A GRAM-LRM adapter enables usage of any LRM 
using GRAM. The GRAM-LRM adapter translates GRAM messages into LRM specific 
messages. Therefore, to access any LRM in a Globus based Grid, the installation of 
GRAM-LRM adapter is required. We use Globus to Condor adapter for accessing the 
Grid-sites of the testbed, which are running Condor LRMs.

3.5 NTP for time synchronization

Network Time Protocol (NTP) (NTP, n.d.) is used to synchronize the time of a 
computer (client or server) to another reliable computer or a reference computer. NTP is a 
networking protocol for clock synchronization. NTP uses a hierarchy of clock sources. We 
use NTP in our testbed to have the clocks of all the computers in sync. NTP is needed in 
the testbed because due to the clock mismatch it is quite possible to send a certificate from 
one computer to the another on which the start validity period of the certificate has not yet 
come.

3.6 Condor-g and DAGMan as pre-requisites for Pegasus WMS

Condor-g (Frey et al., 2002) provides an ability to access Grid resources in the 
Condor way. Therefore, using Condor-g it is possible to use non-Condor Grid resources, 
such as PBS, SGE, for execution of the jobs that are submitted to a Condor queue. 
Moreover, Condor-g also enables exploiting job management related features of Condor 
for the jobs submitted to non-Condor remote Grid resources. Pegasus WMS uses Condor-g 
for submitting jobs to remote Grid resources. Condor-g communicates with resources and 
transfers files from and to these Grid resources. Condor-g uses GRAM protocol for job 
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submission to Grid resources and a local Global Access to Secondary Storage (GASS) 
(Bester et al., 1999) server for file transfers.

DAGMan (Frey, 2002) is HTCondor technology supporting execution of the jobs 
of a DAG on a Condor pool. It can utilize non-Condor Grid resources such as SGE, PBS, 
and LSF using Condor-g and can utilize the facility of flocking to get more resources in 
the pool. DAGMan submits a DAG job as a Condor job to a Condor scheduler. However, 
a data movement from one Grid-site to another Grid-site is not automatically handled 
by DAGMan, for which pre-script and post-script need to be associated with the jobs. 
DAGMan provides fault tolerance through generating a rescue DAG, which can be 
restarted from the failure point without redoing the earlier computed work.

3.7 Pegasus WMS as a workflow management system

Pegasus WMS (Deelman et al., 2005) is a workflow execution and management 
software for workflow jobs, which are represented as Directed Acyclic Graph in DAX 
format. It manages the dependencies of the jobs of a workflow. Pegasus WMS can allow 
use of one or more Grid resources for execution of the jobs of a particular workflow 
application. Pegasus WMS uses DAGMan (Frey, 2002) for execution of dependent jobs 
and Condor-g for job submission. A separate section is devoted to Pegasus WMS, see 
Section 6 for further details.

4. Deployment of the grid testbed:  
network configuration and network emulation

The Grid middleware software and other related services/software are available for 
Linux OSes. Therefore, we use Ubuntu OS for the machines of the Grid testbed, though 
the details presented on the deployment are applicable to other Linux variants with minor 
differences in the installation steps or in the OS specific configuration files.

4.1 Network configuration

The testbed includes four personal dual-core computers having Ubuntu 12.04LTS 
operating system and a networking switch to make a LAN environment. The configuration 
of the host names and the IP addresses is shown in Table 1. For each machine, the 
configuration of IP address is done using GUI based Network settings utility available in 
Ubuntu. The host name of a machine is configured in the /etc/hostname file and the 
mapping of host name to IP address is configured in the /etc/hosts file.
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Table 1   The Host Names and IP Addresses of Four Computers Used for 
Deployment of the Grid Testbed

Host Name IP Address Fully Qualified Hostname
ca 192.168.31.230 ca.it2.ddu.ac.in
grid-b 192.168.31.203 grid-b.it2.ddu.ac.in
grid-v 192.168.31.231 grid-v.it2.ddu.ac.in
grid-m 192.168.31.232 grid-m.it2.ddu.ac.in

4.2 Network emulation

We use dummynet (Carbone & Rizzo, 2010) to emulate network links. The 
dummynet emulator is available in source code form (Dummynet, n.d.); therefore it needs 
to be compiled into binary before installation. We used 20120812-ipfw3.tgz file, which 
is available on its web-site. We uncompress this file using the tar command, and we build 
binary files by running the make command. The installation of dummynet includes placing 
the ipfw executable in the /usr/local/sbin directory and the ipfw_mod kernel module 
in the directory: /lib/modules/‘uname-r’. We install dummynet on each computer of 
the Grid testbed, but we configure each machine with different bandwidth values. Figure 3 
shows the additional steps of configuring dummynet in the Grid testbed.

To emulate different bandwidth values among the four machines of the testbed, 
we configure each machine with different bandwidth value. The grid-b has 1,024 kbit/
s, grid-v has 512 kbit/s, grid-m has 256 kbit/s, and ca has 128 kbit/s as bandwidth 
values. Figure 4 shows how to configure bandwidth control on the grid-b machine 
through the install-bandwidth-limiter.sh file, which we create and is not an 
available configuration file. The bandwidth control uses two pipes: one for the upload 
bandwidth and the second for the download bandwidth. For other machines, the install-
bandwidth-limiter.sh file is similar, except for the value of bandwidth and the source 
and the destination IP addresses. The pipe 101 is used to control the bandwidth on the 
traffic that travels from the machine itself to the other three machines of the testbed. 
Similarly, the pipe 102 is used to control the bandwidth on the traffic that arrives from 

Figure 3   Additional Steps of Configuration Dummynet in the Grid Testbed
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any other machine of the testbed to the machine itself. When bandwidth control is not 
needed, the network emulation can be disabled by running the ipfw -q flush and ipfw 
-q pipe flush commands.

5. Deployment of the grid testbed: LRM and grid middleware

5.1 Our common procedure for installation of software on Ubuntu

In Ubuntu OS, software that are maintained by various Ubuntu repositories are 
installed on a computer by connecting the computer to Internet and then running sudo 
apt-get install command. We first installed, without doing any configuration, all the 
required software and their dependencies on one computer using sudo apt-get install. 
As part of any software installation on a Ubuntu machine using apt tool, all the needed 
.deb files with dependencies are downloaded into the /var/cache/apt/archives 
directory. Using these downloaded .deb files, for each software we create the required 
package repository and package indexing, i.e., Packages.gz file, using the dpkg-
scanpackages command. Then, we modify the /etc/apt/sources.list file to reflect 
the locations of various local repositories created in the earlier step. Next, we update the 
package repository using the sudo apt-get update command. Finally, we install a 
particular software using the sudo apt-get install <package-name> command, 
where <package-name> is the name of the chosen software, as if you are connected to 
Internet.

Installation of non-Ubuntu maintained software on Ubuntu OS involves one 
additional step of configuring vendor’s repository on the computer. Installation using 
either the sudo apt-get install <package-name> command or through searching in 
Ubuntu Software Center will not succeed, as such software are not maintained by Ubuntu 
repositories. For non-Ubuntu maintained software, the required repository files (*.deb) for 
various supported platforms are provided by its software vendor. For configuring the local 
repository of a computer, first we need to choose appropriate repository file depending 

Figure 4   Content of the Additional File: install-bandwidth-limiter.
sh on the grid-b Machine for Controlling Bandwidth in the Grid Testbed
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upon the target platform of the computer, characterized by operating system and hardware 
architecture (32 bit or 64 bit); next, we need to download the chosen repository file 
to the computer; then, we need to install the repository file using the sudo dpkg -i 
<repository-file.deb> command to update the local repository configuration of the 
machine.

5.2 Globus installation and configuration

Globus requires Java and Ant as prerequisites. Therefore, we install Java from jdk-
7u9-linux-i586.gz file and Apache Ant from apache-ant-1.8.4-bin.tar.gz file 
on all the four machines of the testbed. We present the installation and configuration of 
globus components next.

5.2.1 Roles and corresponding machines

In our testbed, the ca machine, which works as a Certificate Authority using 
SimpleCA, issues host certificates and user certificates to other machines. The other three 
machines: grid-b, grid-v, and grid-m, and ca play roles of Grid nodes. The Grid node 
role indicates that a particular machine is a compute node, which allows the execution of a 
remotely submitted job.

5.2.2 Installation of globus components on the ca machine

We install the globus-gram5 and globus-gridftp packages as per the procedure 
discussed in Section 5.1. Similarly, on CA, i.e., the ca.it2.ddu.ac.in machine, we 
install globus-gsi and globus-simple-ca Globus packages. As part of the above 
installation on CA, the following steps are done automatically by the installer: (1) install 
Grid Security Infrastructure and Simple CA, (2) create the simpleca user automatically, 
(3) create the self-signed host-certificate, and (4) the simpleca user gets globus, default 
one, as the pass-phrase to sign requests of signing host-certificates and user-certificates. 
We create a user with the name gtuser on all the machines, including ca as it also plays 
role of a Grid node.

5.2.3 Configuration of grid user on the ca machine

On the ca machine, as the gtuser user we send a request for user certificate using 
the grid-cert-request command. The command prompts the requesting user to enter 
its name and choose PEM pass-phrase, and generates the following three files: usercert_
request.pem, userkey.pem, and an empty usercert.pem. Then, we send the user 
certificate request (usercert_request.pem) file to the simpleca user for signing, which 
the simpleca user signs using the grid-ca-sign command and sends the generated file 
back to the gtuser user. We as the gtuser user store the received signed certificate file 
under its /home/gtuser/.globus directory with the name usercert.pem. The gtuser 
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user can verify the installation and configuration using the grid-proxy-init -debug 
-verify command. Next, we do a mapping from a user certificate to a local Linux user 
account by running the grid-mapfile-add-entry command as the root user. Finally, 
we verify working of all components by running globus-job-run ca.it2.ddu.ac.in/
jobmanager-fork/bin/hostname -f command as the gtuser user.

5.2.4 Preparing GSI configuration file on CA for distribution

On the ca machine, we as the simpleca user create a .deb file containing GSI 
configuration using the grid-ca-package command. The generated .deb file is used to 
setup GSI on other (Non-CA) machines which will work as Grid nodes. Other Grid nodes 
install GSI configuration using the dpkg command and the generated .deb file.

5.2.5 Installation and configuration on other grid nodes

In this paragraph, we discuss about how we install and configure Globus components 
on the remaining Grid nodes, i.e., grid-b, grid-v, and grid-m. We install GRAM and 
GridFTP Globus components using the procedure discussed in Section 5.2.2. Next, as 
the root user, we install CA certificates and signing policy, using the distribution file 
generated by simpleca user on the ca machine in Section 5.2.4, on the grid-b, grid-v, 
and grid-m machines. Next, on each machine we generate a request for a host certificate 
and get it signed from SimpleCA. This step is similar to getting a signed user certificate, 
except that the host certificate request is generated as the user being root user. Next, we 
do the configuration of the Grid user on each machine, for which the used procedure is 
similar to as discussed in Section 5.2.3.

5.3 Installation and configuration of NTP

We use the grid-b machine as a local NTP server and other machines as NTP 
clients to grid-b. After installing NTP on each machine of the testbed, we configure 
the /etc/ntp.conf file. We put following configuration line: server 127.127.1.0, 
on the grid-b machine in its /etc/ntp.conf file. On the other machines, we put 
server 192.168.31.203 as the configuration line in their /etc/ntp.conf files, where 
192.168.31.203 is the IP address of the grid-b machine.

5.4 Installation and configuration of condor components

We use Condor 7.8.7 as a LRM. In the testbed, as each machine is to work as a 
Grid-site, we install personal Condor on each machine. We install condor using sudo apt-
get install condor command by following the procedure discussed in Section 5.1. 
Next, we verify the installation of Condor by submitting a Condor submit file containing a 
Vanilla universe job using condor_submit command.
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To allow submission and execution of remotely submitted jobs, we install GRAM-
Condor adapter on each Grid-site of the Grid testbed. We install the adapter using sudo 
apt-get install globus-gram-job-manager-condor command. For each Grid-
site, we do testing of GRAM-Condor adapter by submitting a GRAM job from any other 
machine of the testbed. For example, to test working of GRAM-Condor adapter on the 
grid-v machine, we perform following steps: (1) login on grid-b as the gtuser user, 
(2) create proxy credentials using grid-proxy-init, and (3) submit a job to grid-v 
using globus-job-run.

Pegasus WMS uses the Grid universe for a job to allow its execution and monitoring 
on remote Grid-site in the condor way. Condor-g component of HTCondor allows the 
Grid universe job to be submitted using condor_submit. The condor-g component 
gets automatically installed when HTCondor is installed. Though a Condor job can be 
submitted to a remote Condor LRM using globus-job-run, the Pegasus WMS uses 
Condor-g for submission of remote jobs to avail facilities of job monitoring and fault 
tolerance for the submitted jobs on the submit site in the unified way -- the Condor way.

6. Deployment of the grid testbed: Pegasus WMS and its 
configuration for the grid testbed

Pegasus WMS was developed by University of Southern California in collaboration 
with the Condor team of University of Wisconsin Madison. Pegasus WMS is maintained 
by the Pegasus team. Pegasus WMS is available freely in binary form for different 
platforms; moreover, it is open source and it relies on other open source software. 
Pegasus WMS is made available for use since 2001. We use Pegasus WMS version 4.1 
for preparing the Grid testbed supporting workflow scheduling. In this section, we first 
concisely describe Pegasus WMS and then present the configuration that we do in the 
Grid testbed to achieve scheduling of scientific workflow application.

6.1 Pegasus WMS as a workflow planner and DAGMan as a workflow executor

Pegasus WMS is a workflow execution and management software for workflow jobs 
that are represented as Directed Acyclic Graph. It manages dependencies of jobs. It can 
allow use of one or more Grid-sites for execution of the jobs of a workflow application. 
Pegasus WMS can use any Grid resource or a Grid-site that can be accessed using GRAM. 
Pegasus WMS uses, on the workflow submit site, Condor-g for job submission and 
Condor DAGMan for execution of a DAG. Pegasus WMS does planning of the jobs of a 
workflow, represented in .dax format, and generates a concrete workflow in form of .dag 
file and Condor-g submit files, and passes them to DAGMan for execution.
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DAGMan itself cannot decide about which Grid-site runs which jobs, though the site 
can utilize any available machine of the cluster once the job is submitted to a particular 
Grid-site. DAGMan can not take decision about which Grid-site is best to run a particular 
job. Therefore, Pegasus WMS complements DAGMan for supporting scheduling and 
execution of the jobs of a workflow on Grid resources. Pegasus WMS chooses appropriate 
Grid resources for execution of jobs, which is done by a site-selector algorithm, and 
generates codes for file movement, data cleanup, data registration, etc. Moreover, Pegasus 
WMS provides the monitoring of a running workflow and also provides the provenance 
and performance related information.

6.2 Working of Pegasus WMS

We briey highlight on working of PegasusWMS. Pegasus WMS’s pegasus-plan 
command takes an abstract workflow (DAX) as an input and does planning (deciding 
which task runs on which Grid-site) of tasks of the workflow based on the information 
provided in catalogs. This selection decision is taken by a site-selector algorithm, which 
we configure in the property file -- .pegasusrc file in our testbed, of Pegasus WMS. The 
pegasus-plan command uses physical locations specified for input files from the replica 
catalog. The pegasus-plan command prepares the DAGMan .dag file and Condor job 
submit files based on the information provided in the transformation catalog. The prepared 
Condor submit files are in fact Condor-G submit files having Grid as Universe. The 
pegasus-plan command adds the additional jobs for creating a workflow directory, 
transferring intermediate files, registering the final data and intermediate data in replica 
catalog, and cleanup activities. Pegasus WMS’s pegasus-run command runs the jobs of 
the planned workflow on the chosen Grid-sites. The pegasus-run command itself does 
not run the jobs of the workflow, rather Pegasus WMS relies on DAGMan, which is a 
workflow executor for Pegasus WMS.

When a workflow is started using the pegasus-run command, the command starts 
the monitoring daemon (pegasus-monitord) in the directory (called workflow directory 
and is created by pegasus-plan) containing the condor submit files. The pegasus-
monitord daemon parses the condor output files and updates the status of the workflow 
to a database and to the jobstate.log text file.

6.3 Installation and configuration of Pegasus WMS in the grid testbed

6.3.1 Installation of Pegasus WMS

As the root user, we install Pegasus WMS on the machines, which are having 32-bit 
Ubuntu OS, using pegasus 4.1.0-2 i386.deb file, which we generated from .rpm file 
using alien tool, as .deb file for 32-bit, Intel architecture was not available. As discussed 
earlier, we use the four Grid nodes as four Grid-sites. We assign the names of these sites 
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as ddu_grid-b, ddu_grid-v, ddu_grid-m, and ddu_ca, and configure these names in the Site 
Catalog. All these four Grid-sites play role of an Executor and ddu_grid-b plays role of a 
Submit and an Output site, in addition to Executor.

6.3.2 Configuration of directory structure and files

The Pegasus WMS needs a scratch directory and a storage directory on each 
Gridsite. The pegasus-plan creates create dir jobs, one per Grid-site, which will create 
a workflow directory under scratch directory on each Grid-site that will run jobs of the 
workflow. The storage directory is used to hold output data of workflows. We create 
/scratch as a scratch directory and /storage as a storage directory, both having 
all permissions, on each Grid-site of the testbed. We configure the locations of these 
directories in Site Catalog.

We configure Pegasus WMS for the gtuser user on the submit Grid-site, as we 
have configured the gtuser user as the user of the Grid testbed. Under the home 
directory of the gtuser user, i.e., /home/gtuser, we create the .pegasusrc file 
containing initialization of various properties. The .pegasusrc property file contains the 
configuration of locations of Replica Catalog, Site Catalog, and Transformation Catalog. 
Furthermore, we also specify the pegasus.selector.site property indicating which 
site-selector algorithm is used for mapping the jobs of a workflow in this file.

Figure 5 shows the directory structure used for keeping the configuration files, 
the input files to Pegasus WMS, and the output files generated by Pegasus WMS. The 
rc.data file under the directory /home/gtuser/pegasus-wms/config is a text based 
Replica Catalog. The sites.xml3 file under /home/gtuser/pegasu-s-wms/config 
is an XML based Site Catalog. The tc.data.text file under /home/gtuser/pegasus-
wms/config is a text based Transformation Catalog. The /home/gtuser/pegasus-
wms/local-scratch is the directory to hold temporary files created for the local site and 
the directory /home/gtuser/pegasus-wms/local-storage is used to store data files. 
When we use the pegasus-plan command to do planning of an abstract workflow, we 
make the /home/gtuser/pegasus-wms/ directory as the current working directory so 
that the paths to the .dax file and the workflow run directory can be specified relative to 
this directory. The /home/gtuser/pegasus-wms/dax directory is used to keep abstract 
workflow files in DAX (XML) format. The workflow-run directory is used, specified 
using --dir option to pegasus-plan, by the pegasus-plan to store generated submit 
files produced by planning of the workflow. The pegasus-plan creates a separate 
directory for each planning done by it under workflow-run directory, which pegasus-
run uses for executing the planned concrete workflow. The input-data directory is used 
to hold data files of workflows, whose locations are specified in Replica Catalog.
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7. Testing and use of the testbed

7.1 Methodology of experimentations

Figure 6 shows the steps of the methodology used to carry out experiments on 
the Grid testbed supporting workflow scheduling, which includes four major phases of 
performing experimentation. These phases in sequence are as follows: (1) experiment 
configuration, (2) workflow planning, (3) workflow execution, and (4) result generation. 
During experiment configuration in Pegasus WMS, the steps of computations of a 
scientific workflow are specified as an abstract workflow in DAX, an XML file. Next, 
site catalog, transformation catalog, and replica catalog are set up. Next, the site-selector 
algorithm is chosen by assigning appropriate name of siteselector class, i.e., workflow 
scheduling algorithm, to the pegasus.selector.site property in .pegasusrc file. The 
next two steps are related to planning of a workflow.

Once the concrete workflow is generated at the end of workflow planning, the 
execution and monitoring of the workflow can be started. For workflow execution, first, 
the Grid user, in our testbed the gtuser user, needs to create proxy credentials to allow 
access of Grid resources to the jobs submitted by pegasus-run on behalf of the user. 
Next, the pegasus-run command is executed to start execution of the jobs of the planned 
workflow on the Grid-sites. The execution of the workflow can be monitored by running 
the pegasus-status command under control of watch command. An optional step of 
using pegasus-analyzer, which is not shown in the diagram, can be used to debug a 
failed workflow. If the execution of the workflow is completed, various plots are generated 
using the pegasus-plots command and statistics of the workflow run is collected using 
the pegasus-statistics command.

7.2 Testing of various components and workflow scheduling and execution

The complete testing of the whole testbed includes testing of many constituent 

Figure 5   Directory Structure Used on Submit-Site (ddu_grid-b) for  
Configuration of Pegasus WMS
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components and their functionalities. We list out various testings that we carried out for 
our testbed. Then, we provide testing of workflow scheduling and workflow execution. 
The work in (Prajapati & Shah, 2014b) addresses remote job submission to LRM using 
Grid computing mechanisms. We have performed following testings on each Grid-site to 
test working of various components.

•	 Testing of GSI for proxy credential generation using grid-proxy-init and 
grid-proxy-info

•	 Testing of Condor LRM for job execution using condor_submit and monitoring 
using condor_q

•	 Testing of gridftp using globus-url-copy for for file transfer

•	 Testing of fork job manager using globus-job-run

•	 Testing of Condor job manager (Globus-Condor adapter) for job execution using 
globus-job-run

•	 Testing of Condor-g for remote job submission using condor_submit and 
Universe=Globus in condor submit file

We perform testing of Pegasus WMS by scheduling and running the blackdiamond 
workflow on the four Grid-sites: ddu_grid-b, ddu_grid-v, ddu_grid-m, and ddu_ca. 
We create the concrete workflow for RoundRobin site-selector algorithm using pegasus-
plan by passing the four Grid-sites to --sites option. If the planning is successful, 

Figure 6   Methodology for Performing Experiments Using the Grid 
Testbed and Pegasus WMS. The Step in Dotted Line Can Be Performed 
after Pegasus-Plan, but before Pegasus-Run
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pegasus-plan will concretize the workflow and will create a unique directory, for which 
time-stamp value is used as the name of the directory, containing job submit files and 
DAGMan submit file. To start execution of the planned workflow, we run the workflow 
using the pegasus-run command. While the workflow is executing, we can see status of 
executing workflow using pegasus-status. To check status of activities the four Grid-
sites are doing for black diamond workflow at particular instant of time, we log on to three 
other machines (grid-v, grid-m, and ca) using ssh from the grid-b machine.

Next, we generate various charts using the pegasus-plots command. The 
pegasus-plots command will generate various plots under the plots sub-directory under 
the workflow run-directory. Figure 7 shows Gantt chart showing the assignment of the 
workflow jobs on the four Grid-sites using RoundRobin site-selector algorithm.

7.3 Workflow scheduling and execution of molecular dynamics code workflow

Using the way of creating the black-diamond workflow, we prepare two workflows 
of 41 tasks based on the structure of the task-graph of Molecular dynamics code, which is 
available in (Topcuouglu et al., 2002). For both the test workflows, we choose the runtime 
of each task randomly in the range 243 ~ 357 seconds. For both the workflows, the 
cumulative runtime of all the tasks is 12,219 seconds and the average runtime is 298.02 
seconds. However, we keep different amount of data communication among the tasks of 
these two test workflows to observe their effect on makespan. For the first test workflow, 
the amount of data communication between two tasks is chosen randomly in the range 
9,879,000 ~ 15,698,940 Bytes; the Communication to Computation Ratio (CCR) for this 
workflow is CCR ≈ 0.65. For the second test workflow, the amount of data communication 
between each pair of tasks is small, specifically, it is in the range 987,900 ~ 1,569,894 

Figure 7   Host over Time Chart for Black-Diamond Workflow Using 
RoundRobin Site-Selector Algorithm
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Bytes. Thus, the CCR for the second workflow is CCR ≈ 0.065. We schedule and execute 
both the test workflows using Random site-selector algorithm in the similar way, as 
discussed earlier. For the first test workflow, the makespan of 23,261 seconds is observed. 
However, for the second test workflow, having small data communication, the makespan 
of 6,308 seconds is observed. Figure 8 shows the Gantt chart showing the assignment of 
the jobs of the second test workflow on the four Grid-sites using Random site-selector 
algorithm. From the experimental results, we can understand that by increasing the amount 
of data communication among the workflow tasks, the makespan of workflow execution 
increases due to relatively higher time spent in data communication. Thus, the prepared 
testbed can allow experimentation of workflow scheduling and execution on a real Grid 
environment. 

This testbed was used in (Prajapati & Shah, 2014a) for performing bandwidth-aware 
workflow scheduling of scientific workflow.

7.4 Scalability and failure handling in the testbed

Two important problems: scalability of a testbed and failure of resources in the 
testbed can affect to workflow scheduling and execution. In our testbed, we have added 
a single node under each Grid site, as show in Figure 2, for demonstration purpose; 
however, it is possible to add many nodes under each Grid site to make the testbed more 
scalable. Workflow scheduling time depends on the number of Gridsites, not on the 
number of computing nodes. Therefore adding computing nodes under a Grid-site will 
not affect to workflow scheduling time. Moreover, adding Grid-sites will affect workflow 
scheduling time polynomially depending upon the workflow scheduling algorithm. Failure 

Figure 8   Host over Time Chart for Molecular Dynamics Code Workflow 
Having Small Data Communication Using Random Site-Selector Algorithm
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of resources can happen at two levels: (1) failure of a computing node and (2) failure of a 
Grid-site. The failure of a computing node does not affect to workflow execution, as the 
failed job can be handled by the LRM by restarting it on some other available computing 
node under its control. However, failure of a Grid-site can affect to workflow execution 
depending upon how the used WMS deal with the Grid-site failure. In case of Pegasus 
WMS, the failure of a job is detected by the monitoring daemon (pegasus-monitord). 
The user can debug the failed workflow execution using pegasus-analyzer, which 
provides information related to the failure.

8. Conclusion

Our work designed and developed an in-house Grid testbed using widely used open-
source software packages/tools, including Globus toolkit 5.2.3, HTCondor 7.8.7, NTP, 
and Pegasus WMS 4.1.0, to experiment workflow scheduling and execution. Furthermore, 
the testbed emulated a real Grid scenario of bandwidth variation among various Grid-
sites using dummynet. Building a Grid environment requires the understanding of the 
concepts related to network, protocols, services, etc. However, due to proper study and 
experimentation with individual software components, we are able to produce a usable 
Grid testbed, having minimal physical resources, for carrying workflow scheduling and 
execution. Furthermore, through the experimental work, we are able to provide concise 
understanding of various involved software, their installation, their configuration, and 
their testing.

Our testbed has only four computing machines, in which each machine works as a 
Grid-site as well as a computing node. It is possible to add additional computing nodes 
in each Grid-site. The added computing machines need to become part of the batch-
queue cluster that is under control of a particular Grid-site. For example, in our testbed 
we need to install Condor on each additional computing machine and we need to make 
each added computing machine to respond to the central manager of a particular Grid-site. 
Thus, the presented Grid testbed can easily be replicated or adapted, as the work concisely 
included all important details pertaining to the development and the deployment of the 
Grid architecture supporting workflow scheduling. Moreover, we can easily include a 
large number of computing nodes under each Grid-site to achieve better reliability. There 
are other WMSs, e.g., Askalon (Fahringer et al., 2005), Kepler (Altintas et al., 2004), and 
Karajan (von Laszewski & Hategan, 2005), for which similar deployment and testing of a 
Grid testbed can provide substantial help to novice researchers.
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